This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The tangent of _pi / 4 . (Contributed by Mario Carneiro, 5-Apr-2015) (Proof shortened by SN, 2-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tan4thpi | ⊢ ( tan ‘ ( π / 4 ) ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | ⊢ π ∈ ℂ | |
| 2 | 4cn | ⊢ 4 ∈ ℂ | |
| 3 | 4ne0 | ⊢ 4 ≠ 0 | |
| 4 | 1 2 3 | divcli | ⊢ ( π / 4 ) ∈ ℂ |
| 5 | sincos4thpi | ⊢ ( ( sin ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) ∧ ( cos ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) ) | |
| 6 | 5 | simpri | ⊢ ( cos ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) |
| 7 | sqrt2re | ⊢ ( √ ‘ 2 ) ∈ ℝ | |
| 8 | 7 | recni | ⊢ ( √ ‘ 2 ) ∈ ℂ |
| 9 | 2re | ⊢ 2 ∈ ℝ | |
| 10 | 2pos | ⊢ 0 < 2 | |
| 11 | 9 10 | sqrtgt0ii | ⊢ 0 < ( √ ‘ 2 ) |
| 12 | 7 11 | gt0ne0ii | ⊢ ( √ ‘ 2 ) ≠ 0 |
| 13 | recne0 | ⊢ ( ( ( √ ‘ 2 ) ∈ ℂ ∧ ( √ ‘ 2 ) ≠ 0 ) → ( 1 / ( √ ‘ 2 ) ) ≠ 0 ) | |
| 14 | 8 12 13 | mp2an | ⊢ ( 1 / ( √ ‘ 2 ) ) ≠ 0 |
| 15 | 6 14 | eqnetri | ⊢ ( cos ‘ ( π / 4 ) ) ≠ 0 |
| 16 | tanval | ⊢ ( ( ( π / 4 ) ∈ ℂ ∧ ( cos ‘ ( π / 4 ) ) ≠ 0 ) → ( tan ‘ ( π / 4 ) ) = ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) ) | |
| 17 | 4 15 16 | mp2an | ⊢ ( tan ‘ ( π / 4 ) ) = ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) |
| 18 | 5 | simpli | ⊢ ( sin ‘ ( π / 4 ) ) = ( 1 / ( √ ‘ 2 ) ) |
| 19 | 18 6 | oveq12i | ⊢ ( ( sin ‘ ( π / 4 ) ) / ( cos ‘ ( π / 4 ) ) ) = ( ( 1 / ( √ ‘ 2 ) ) / ( 1 / ( √ ‘ 2 ) ) ) |
| 20 | 8 12 | reccli | ⊢ ( 1 / ( √ ‘ 2 ) ) ∈ ℂ |
| 21 | 20 14 | dividi | ⊢ ( ( 1 / ( √ ‘ 2 ) ) / ( 1 / ( √ ‘ 2 ) ) ) = 1 |
| 22 | 17 19 21 | 3eqtri | ⊢ ( tan ‘ ( π / 4 ) ) = 1 |