This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate representation of a successor aleph. Compare alephsuc and alephsuc2 . Equality can be obtained by taking the card of the right-hand side then using alephcard and carden . (Contributed by NM, 23-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephsuc3 | |- ( A e. On -> ( aleph ` suc A ) ~~ { x e. On | x ~~ ( aleph ` A ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephsuc2 | |- ( A e. On -> ( aleph ` suc A ) = { x e. On | x ~<_ ( aleph ` A ) } ) |
|
| 2 | alephcard | |- ( card ` ( aleph ` A ) ) = ( aleph ` A ) |
|
| 3 | alephon | |- ( aleph ` A ) e. On |
|
| 4 | onenon | |- ( ( aleph ` A ) e. On -> ( aleph ` A ) e. dom card ) |
|
| 5 | 3 4 | ax-mp | |- ( aleph ` A ) e. dom card |
| 6 | cardval2 | |- ( ( aleph ` A ) e. dom card -> ( card ` ( aleph ` A ) ) = { x e. On | x ~< ( aleph ` A ) } ) |
|
| 7 | 5 6 | ax-mp | |- ( card ` ( aleph ` A ) ) = { x e. On | x ~< ( aleph ` A ) } |
| 8 | 2 7 | eqtr3i | |- ( aleph ` A ) = { x e. On | x ~< ( aleph ` A ) } |
| 9 | 8 | a1i | |- ( A e. On -> ( aleph ` A ) = { x e. On | x ~< ( aleph ` A ) } ) |
| 10 | 1 9 | difeq12d | |- ( A e. On -> ( ( aleph ` suc A ) \ ( aleph ` A ) ) = ( { x e. On | x ~<_ ( aleph ` A ) } \ { x e. On | x ~< ( aleph ` A ) } ) ) |
| 11 | difrab | |- ( { x e. On | x ~<_ ( aleph ` A ) } \ { x e. On | x ~< ( aleph ` A ) } ) = { x e. On | ( x ~<_ ( aleph ` A ) /\ -. x ~< ( aleph ` A ) ) } |
|
| 12 | bren2 | |- ( x ~~ ( aleph ` A ) <-> ( x ~<_ ( aleph ` A ) /\ -. x ~< ( aleph ` A ) ) ) |
|
| 13 | 12 | rabbii | |- { x e. On | x ~~ ( aleph ` A ) } = { x e. On | ( x ~<_ ( aleph ` A ) /\ -. x ~< ( aleph ` A ) ) } |
| 14 | 11 13 | eqtr4i | |- ( { x e. On | x ~<_ ( aleph ` A ) } \ { x e. On | x ~< ( aleph ` A ) } ) = { x e. On | x ~~ ( aleph ` A ) } |
| 15 | 10 14 | eqtr2di | |- ( A e. On -> { x e. On | x ~~ ( aleph ` A ) } = ( ( aleph ` suc A ) \ ( aleph ` A ) ) ) |
| 16 | alephon | |- ( aleph ` suc A ) e. On |
|
| 17 | onenon | |- ( ( aleph ` suc A ) e. On -> ( aleph ` suc A ) e. dom card ) |
|
| 18 | 16 17 | mp1i | |- ( A e. On -> ( aleph ` suc A ) e. dom card ) |
| 19 | onsucb | |- ( A e. On <-> suc A e. On ) |
|
| 20 | alephgeom | |- ( suc A e. On <-> _om C_ ( aleph ` suc A ) ) |
|
| 21 | 19 20 | bitri | |- ( A e. On <-> _om C_ ( aleph ` suc A ) ) |
| 22 | fvex | |- ( aleph ` suc A ) e. _V |
|
| 23 | ssdomg | |- ( ( aleph ` suc A ) e. _V -> ( _om C_ ( aleph ` suc A ) -> _om ~<_ ( aleph ` suc A ) ) ) |
|
| 24 | 22 23 | ax-mp | |- ( _om C_ ( aleph ` suc A ) -> _om ~<_ ( aleph ` suc A ) ) |
| 25 | 21 24 | sylbi | |- ( A e. On -> _om ~<_ ( aleph ` suc A ) ) |
| 26 | alephordilem1 | |- ( A e. On -> ( aleph ` A ) ~< ( aleph ` suc A ) ) |
|
| 27 | infdif | |- ( ( ( aleph ` suc A ) e. dom card /\ _om ~<_ ( aleph ` suc A ) /\ ( aleph ` A ) ~< ( aleph ` suc A ) ) -> ( ( aleph ` suc A ) \ ( aleph ` A ) ) ~~ ( aleph ` suc A ) ) |
|
| 28 | 18 25 26 27 | syl3anc | |- ( A e. On -> ( ( aleph ` suc A ) \ ( aleph ` A ) ) ~~ ( aleph ` suc A ) ) |
| 29 | 15 28 | eqbrtrd | |- ( A e. On -> { x e. On | x ~~ ( aleph ` A ) } ~~ ( aleph ` suc A ) ) |
| 30 | 29 | ensymd | |- ( A e. On -> ( aleph ` suc A ) ~~ { x e. On | x ~~ ( aleph ` A ) } ) |