This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs function by transfinite recursion, starting from _om . Using this theorem we could define the aleph function with { z e. On | z ~<_ x } in place of |^| { z e. On | x ~< z } in df-aleph . (Contributed by NM, 3-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephsuc2 | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) = { 𝑥 ∈ On ∣ 𝑥 ≼ ( ℵ ‘ 𝐴 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephon | ⊢ ( ℵ ‘ suc 𝐴 ) ∈ On | |
| 2 | 1 | oneli | ⊢ ( 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) → 𝑦 ∈ On ) |
| 3 | alephcard | ⊢ ( card ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) | |
| 4 | iscard | ⊢ ( ( card ‘ ( ℵ ‘ suc 𝐴 ) ) = ( ℵ ‘ suc 𝐴 ) ↔ ( ( ℵ ‘ suc 𝐴 ) ∈ On ∧ ∀ 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 5 | 3 4 | mpbi | ⊢ ( ( ℵ ‘ suc 𝐴 ) ∈ On ∧ ∀ 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) |
| 6 | 5 | simpri | ⊢ ∀ 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) |
| 7 | 6 | rspec | ⊢ ( 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) → 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) |
| 8 | 2 7 | jca | ⊢ ( 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 9 | sdomel | ⊢ ( ( 𝑦 ∈ On ∧ ( ℵ ‘ suc 𝐴 ) ∈ On ) → ( 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) → 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 10 | 1 9 | mpan2 | ⊢ ( 𝑦 ∈ On → ( 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) → 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝑦 ∈ On ∧ 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) → 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) ) |
| 12 | 8 11 | impbii | ⊢ ( 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) ↔ ( 𝑦 ∈ On ∧ 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 13 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) ↔ 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 14 | 13 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) } ↔ ( 𝑦 ∈ On ∧ 𝑦 ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 15 | 12 14 | bitr4i | ⊢ ( 𝑦 ∈ ( ℵ ‘ suc 𝐴 ) ↔ 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) } ) |
| 16 | 15 | eqriv | ⊢ ( ℵ ‘ suc 𝐴 ) = { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) } |
| 17 | alephsucdom | ⊢ ( 𝐴 ∈ On → ( 𝑥 ≼ ( ℵ ‘ 𝐴 ) ↔ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) ) ) | |
| 18 | 17 | rabbidv | ⊢ ( 𝐴 ∈ On → { 𝑥 ∈ On ∣ 𝑥 ≼ ( ℵ ‘ 𝐴 ) } = { 𝑥 ∈ On ∣ 𝑥 ≺ ( ℵ ‘ suc 𝐴 ) } ) |
| 19 | 16 18 | eqtr4id | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ suc 𝐴 ) = { 𝑥 ∈ On ∣ 𝑥 ≼ ( ℵ ‘ 𝐴 ) } ) |