This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007) (Revised by Scott Fenton, 3-Jan-2013) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnegex | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝐴 = ( 𝑎 + ( i · 𝑏 ) ) ) | |
| 2 | ax-rnegex | ⊢ ( 𝑎 ∈ ℝ → ∃ 𝑐 ∈ ℝ ( 𝑎 + 𝑐 ) = 0 ) | |
| 3 | ax-rnegex | ⊢ ( 𝑏 ∈ ℝ → ∃ 𝑑 ∈ ℝ ( 𝑏 + 𝑑 ) = 0 ) | |
| 4 | 2 3 | anim12i | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ( 𝑎 + 𝑐 ) = 0 ∧ ∃ 𝑑 ∈ ℝ ( 𝑏 + 𝑑 ) = 0 ) ) |
| 5 | reeanv | ⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ↔ ( ∃ 𝑐 ∈ ℝ ( 𝑎 + 𝑐 ) = 0 ∧ ∃ 𝑑 ∈ ℝ ( 𝑏 + 𝑑 ) = 0 ) ) | |
| 6 | 4 5 | sylibr | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) |
| 7 | ax-icn | ⊢ i ∈ ℂ | |
| 8 | 7 | a1i | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → i ∈ ℂ ) |
| 9 | simplrr | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑑 ∈ ℝ ) | |
| 10 | 9 | recnd | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑑 ∈ ℂ ) |
| 11 | 8 10 | mulcld | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( i · 𝑑 ) ∈ ℂ ) |
| 12 | simplrl | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑐 ∈ ℝ ) | |
| 13 | 12 | recnd | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑐 ∈ ℂ ) |
| 14 | 11 13 | addcld | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( i · 𝑑 ) + 𝑐 ) ∈ ℂ ) |
| 15 | simplll | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑎 ∈ ℝ ) | |
| 16 | 15 | recnd | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑎 ∈ ℂ ) |
| 17 | simpllr | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑏 ∈ ℝ ) | |
| 18 | 17 | recnd | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → 𝑏 ∈ ℂ ) |
| 19 | 8 18 | mulcld | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( i · 𝑏 ) ∈ ℂ ) |
| 20 | 16 19 11 | addassd | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( 𝑎 + ( i · 𝑏 ) ) + ( i · 𝑑 ) ) = ( 𝑎 + ( ( i · 𝑏 ) + ( i · 𝑑 ) ) ) ) |
| 21 | 8 18 10 | adddid | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( i · ( 𝑏 + 𝑑 ) ) = ( ( i · 𝑏 ) + ( i · 𝑑 ) ) ) |
| 22 | simprr | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( 𝑏 + 𝑑 ) = 0 ) | |
| 23 | 22 | oveq2d | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( i · ( 𝑏 + 𝑑 ) ) = ( i · 0 ) ) |
| 24 | mul01 | ⊢ ( i ∈ ℂ → ( i · 0 ) = 0 ) | |
| 25 | 7 24 | ax-mp | ⊢ ( i · 0 ) = 0 |
| 26 | 23 25 | eqtrdi | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( i · ( 𝑏 + 𝑑 ) ) = 0 ) |
| 27 | 21 26 | eqtr3d | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( i · 𝑏 ) + ( i · 𝑑 ) ) = 0 ) |
| 28 | 27 | oveq2d | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( 𝑎 + ( ( i · 𝑏 ) + ( i · 𝑑 ) ) ) = ( 𝑎 + 0 ) ) |
| 29 | addrid | ⊢ ( 𝑎 ∈ ℂ → ( 𝑎 + 0 ) = 𝑎 ) | |
| 30 | 16 29 | syl | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( 𝑎 + 0 ) = 𝑎 ) |
| 31 | 20 28 30 | 3eqtrd | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( 𝑎 + ( i · 𝑏 ) ) + ( i · 𝑑 ) ) = 𝑎 ) |
| 32 | 31 | oveq1d | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( ( 𝑎 + ( i · 𝑏 ) ) + ( i · 𝑑 ) ) + 𝑐 ) = ( 𝑎 + 𝑐 ) ) |
| 33 | 16 19 | addcld | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( 𝑎 + ( i · 𝑏 ) ) ∈ ℂ ) |
| 34 | 33 11 13 | addassd | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( ( 𝑎 + ( i · 𝑏 ) ) + ( i · 𝑑 ) ) + 𝑐 ) = ( ( 𝑎 + ( i · 𝑏 ) ) + ( ( i · 𝑑 ) + 𝑐 ) ) ) |
| 35 | 32 34 | eqtr3d | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( 𝑎 + 𝑐 ) = ( ( 𝑎 + ( i · 𝑏 ) ) + ( ( i · 𝑑 ) + 𝑐 ) ) ) |
| 36 | simprl | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( 𝑎 + 𝑐 ) = 0 ) | |
| 37 | 35 36 | eqtr3d | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ( ( 𝑎 + ( i · 𝑏 ) ) + ( ( i · 𝑑 ) + 𝑐 ) ) = 0 ) |
| 38 | oveq2 | ⊢ ( 𝑥 = ( ( i · 𝑑 ) + 𝑐 ) → ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = ( ( 𝑎 + ( i · 𝑏 ) ) + ( ( i · 𝑑 ) + 𝑐 ) ) ) | |
| 39 | 38 | eqeq1d | ⊢ ( 𝑥 = ( ( i · 𝑑 ) + 𝑐 ) → ( ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ↔ ( ( 𝑎 + ( i · 𝑏 ) ) + ( ( i · 𝑑 ) + 𝑐 ) ) = 0 ) ) |
| 40 | 39 | rspcev | ⊢ ( ( ( ( i · 𝑑 ) + 𝑐 ) ∈ ℂ ∧ ( ( 𝑎 + ( i · 𝑏 ) ) + ( ( i · 𝑑 ) + 𝑐 ) ) = 0 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) |
| 41 | 14 37 40 | syl2anc | ⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) ) → ∃ 𝑥 ∈ ℂ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) |
| 42 | 41 | ex | ⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) ) |
| 43 | 42 | rexlimdvva | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∃ 𝑑 ∈ ℝ ( ( 𝑎 + 𝑐 ) = 0 ∧ ( 𝑏 + 𝑑 ) = 0 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) ) |
| 44 | 6 43 | mpd | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ∃ 𝑥 ∈ ℂ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) |
| 45 | oveq1 | ⊢ ( 𝐴 = ( 𝑎 + ( i · 𝑏 ) ) → ( 𝐴 + 𝑥 ) = ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) ) | |
| 46 | 45 | eqeq1d | ⊢ ( 𝐴 = ( 𝑎 + ( i · 𝑏 ) ) → ( ( 𝐴 + 𝑥 ) = 0 ↔ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) ) |
| 47 | 46 | rexbidv | ⊢ ( 𝐴 = ( 𝑎 + ( i · 𝑏 ) ) → ( ∃ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ↔ ∃ 𝑥 ∈ ℂ ( ( 𝑎 + ( i · 𝑏 ) ) + 𝑥 ) = 0 ) ) |
| 48 | 44 47 | syl5ibrcom | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝐴 = ( 𝑎 + ( i · 𝑏 ) ) → ∃ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) ) |
| 49 | 48 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝐴 = ( 𝑎 + ( i · 𝑏 ) ) → ∃ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) |
| 50 | 1 49 | syl | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 0 ) |