This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, justified by Theorem axrnegex . (Contributed by Eric Schmidt, 21-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-rnegex | ⊢ ( 𝐴 ∈ ℝ → ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cr | ⊢ ℝ | |
| 2 | 0 1 | wcel | ⊢ 𝐴 ∈ ℝ |
| 3 | vx | ⊢ 𝑥 | |
| 4 | caddc | ⊢ + | |
| 5 | 3 | cv | ⊢ 𝑥 |
| 6 | 0 5 4 | co | ⊢ ( 𝐴 + 𝑥 ) |
| 7 | cc0 | ⊢ 0 | |
| 8 | 6 7 | wceq | ⊢ ( 𝐴 + 𝑥 ) = 0 |
| 9 | 8 3 1 | wrex | ⊢ ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 |
| 10 | 2 9 | wi | ⊢ ( 𝐴 ∈ ℝ → ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) |