This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, justified by Theorem axrrecex . (Contributed by Eric Schmidt, 11-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-rrecex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐴 · 𝑥 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cr | ⊢ ℝ | |
| 2 | 0 1 | wcel | ⊢ 𝐴 ∈ ℝ |
| 3 | cc0 | ⊢ 0 | |
| 4 | 0 3 | wne | ⊢ 𝐴 ≠ 0 |
| 5 | 2 4 | wa | ⊢ ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) |
| 6 | vx | ⊢ 𝑥 | |
| 7 | cmul | ⊢ · | |
| 8 | 6 | cv | ⊢ 𝑥 |
| 9 | 0 8 7 | co | ⊢ ( 𝐴 · 𝑥 ) |
| 10 | c1 | ⊢ 1 | |
| 11 | 9 10 | wceq | ⊢ ( 𝐴 · 𝑥 ) = 1 |
| 12 | 11 6 1 | wrex | ⊢ ∃ 𝑥 ∈ ℝ ( 𝐴 · 𝑥 ) = 1 |
| 13 | 5 12 | wi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐴 · 𝑥 ) = 1 ) |