This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Algebraicity of a one-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acsfn1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | ⊢ ( 𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋 ) | |
| 2 | ralss | ⊢ ( 𝑎 ⊆ 𝑋 → ( ∀ 𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ 𝑋 ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( ∀ 𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ 𝑋 ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
| 4 | vex | ⊢ 𝑏 ∈ V | |
| 5 | 4 | snss | ⊢ ( 𝑏 ∈ 𝑎 ↔ { 𝑏 } ⊆ 𝑎 ) |
| 6 | 5 | imbi1i | ⊢ ( ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ↔ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑏 ∈ 𝑋 ( 𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎 ) ↔ ∀ 𝑏 ∈ 𝑋 ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) |
| 8 | 3 7 | bitrdi | ⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( ∀ 𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀ 𝑏 ∈ 𝑋 ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) ) ) |
| 9 | 8 | rabbiia | ⊢ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 } = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑋 ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } |
| 10 | riinrab | ⊢ ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑋 ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } | |
| 11 | 9 10 | eqtr4i | ⊢ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 } = ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) |
| 12 | mreacs | ⊢ ( 𝑋 ∈ 𝑉 → ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ) | |
| 13 | simpll | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝐸 ∈ 𝑋 ) → 𝑋 ∈ 𝑉 ) | |
| 14 | simpr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝐸 ∈ 𝑋 ) → 𝐸 ∈ 𝑋 ) | |
| 15 | snssi | ⊢ ( 𝑏 ∈ 𝑋 → { 𝑏 } ⊆ 𝑋 ) | |
| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝐸 ∈ 𝑋 ) → { 𝑏 } ⊆ 𝑋 ) |
| 17 | snfi | ⊢ { 𝑏 } ∈ Fin | |
| 18 | 17 | a1i | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝐸 ∈ 𝑋 ) → { 𝑏 } ∈ Fin ) |
| 19 | acsfn | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝐸 ∈ 𝑋 ) ∧ ( { 𝑏 } ⊆ 𝑋 ∧ { 𝑏 } ∈ Fin ) ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) | |
| 20 | 13 14 16 18 19 | syl22anc | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
| 21 | 20 | ex | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋 ) → ( 𝐸 ∈ 𝑋 → { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
| 22 | 21 | ralimdva | ⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑏 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) ) |
| 23 | 22 | imp | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ∀ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) |
| 24 | mreriincl | ⊢ ( ( ( ACS ‘ 𝑋 ) ∈ ( Moore ‘ 𝒫 𝑋 ) ∧ ∀ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ∈ ( ACS ‘ 𝑋 ) ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) | |
| 25 | 12 23 24 | syl2an2r | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 𝐸 ∈ 𝑋 ) → ( 𝒫 𝑋 ∩ ∩ 𝑏 ∈ 𝑋 { 𝑎 ∈ 𝒫 𝑋 ∣ ( { 𝑏 } ⊆ 𝑎 → 𝐸 ∈ 𝑎 ) } ) ∈ ( ACS ‘ 𝑋 ) ) |
| 26 | 11 25 | eqeltrid | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑏 ∈ 𝑋 𝐸 ∈ 𝑋 ) → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 } ∈ ( ACS ‘ 𝑋 ) ) |