This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mreriincl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riin0 | ⊢ ( 𝐼 = ∅ → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) = 𝑋 ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 = ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) = 𝑋 ) |
| 3 | mre1cl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) | |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 = ∅ ) → 𝑋 ∈ 𝐶 ) |
| 5 | 2 4 | eqeltrd | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 = ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) ∈ 𝐶 ) |
| 6 | mress | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) → 𝑆 ⊆ 𝑋 ) | |
| 7 | 6 | ex | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋 ) ) |
| 8 | 7 | ralimdv | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∀ 𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ∀ 𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ) |
| 10 | riinn0 | ⊢ ( ( ∀ 𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ∧ 𝐼 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) = ∩ 𝑦 ∈ 𝐼 𝑆 ) | |
| 11 | 9 10 | sylan | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) = ∩ 𝑦 ∈ 𝐼 𝑆 ) |
| 12 | simpll | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 13 | simpr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → 𝐼 ≠ ∅ ) | |
| 14 | simplr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) | |
| 15 | mreiincl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) | |
| 16 | 12 13 14 15 | syl3anc | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) |
| 17 | 11 16 | eqeltrd | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) ∈ 𝐶 ) |
| 18 | 5 17 | pm2.61dane | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) ∈ 𝐶 ) |