This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, a set is independent if and only if all its finite subsets are independent. Part of Proposition 4.1.3 in FaureFrolicher p. 83. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acsfiindd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| acsfiindd.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| acsfiindd.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| acsfiindd.4 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | ||
| Assertion | acsfiindd | ⊢ ( 𝜑 → ( 𝑆 ∈ 𝐼 ↔ ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsfiindd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| 2 | acsfiindd.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | acsfiindd.3 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 4 | acsfiindd.4 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | |
| 5 | 1 | acsmred | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 7 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → 𝑆 ∈ 𝐼 ) | |
| 8 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) ) | |
| 9 | 8 | elin1d | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → 𝑠 ∈ 𝒫 𝑆 ) |
| 10 | 9 | elpwid | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → 𝑠 ⊆ 𝑆 ) |
| 11 | 6 2 3 7 10 | mrissmrid | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) ) → 𝑠 ∈ 𝐼 ) |
| 12 | 11 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝐼 ) → ∀ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑠 ∈ 𝐼 ) |
| 13 | dfss3 | ⊢ ( ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 ↔ ∀ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑠 ∈ 𝐼 ) | |
| 14 | 12 13 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝐼 ) → ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 ) |
| 15 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 16 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 ) → 𝑆 ⊆ 𝑋 ) |
| 17 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) → 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) | |
| 18 | elfpw | ⊢ ( 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ↔ ( 𝑡 ⊆ ( 𝑆 ∖ { 𝑥 } ) ∧ 𝑡 ∈ Fin ) ) | |
| 19 | 17 18 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) → ( 𝑡 ⊆ ( 𝑆 ∖ { 𝑥 } ) ∧ 𝑡 ∈ Fin ) ) |
| 20 | 19 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) → 𝑡 ⊆ ( 𝑆 ∖ { 𝑥 } ) ) |
| 21 | 20 | difss2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) → 𝑡 ⊆ 𝑆 ) |
| 22 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) → 𝑥 ∈ 𝑆 ) | |
| 23 | 22 | snssd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) → { 𝑥 } ⊆ 𝑆 ) |
| 24 | 21 23 | unssd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) → ( 𝑡 ∪ { 𝑥 } ) ⊆ 𝑆 ) |
| 25 | 19 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) → 𝑡 ∈ Fin ) |
| 26 | snfi | ⊢ { 𝑥 } ∈ Fin | |
| 27 | unfi | ⊢ ( ( 𝑡 ∈ Fin ∧ { 𝑥 } ∈ Fin ) → ( 𝑡 ∪ { 𝑥 } ) ∈ Fin ) | |
| 28 | 25 26 27 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) → ( 𝑡 ∪ { 𝑥 } ) ∈ Fin ) |
| 29 | elfpw | ⊢ ( ( 𝑡 ∪ { 𝑥 } ) ∈ ( 𝒫 𝑆 ∩ Fin ) ↔ ( ( 𝑡 ∪ { 𝑥 } ) ⊆ 𝑆 ∧ ( 𝑡 ∪ { 𝑥 } ) ∈ Fin ) ) | |
| 30 | 24 28 29 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) → ( 𝑡 ∪ { 𝑥 } ) ∈ ( 𝒫 𝑆 ∩ Fin ) ) |
| 31 | 5 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) ∧ 𝑠 ∈ 𝐼 ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 32 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) ∧ 𝑠 ∈ 𝐼 ) → 𝑠 ∈ 𝐼 ) | |
| 33 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → 𝑥 ∈ 𝑆 ) | |
| 34 | snidg | ⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ∈ { 𝑥 } ) | |
| 35 | elun2 | ⊢ ( 𝑥 ∈ { 𝑥 } → 𝑥 ∈ ( 𝑡 ∪ { 𝑥 } ) ) | |
| 36 | 33 34 35 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → 𝑥 ∈ ( 𝑡 ∪ { 𝑥 } ) ) |
| 37 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) | |
| 38 | 36 37 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → 𝑥 ∈ 𝑠 ) |
| 39 | 38 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) ∧ 𝑠 ∈ 𝐼 ) → 𝑥 ∈ 𝑠 ) |
| 40 | 2 3 31 32 39 | ismri2dad | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) ∧ 𝑠 ∈ 𝐼 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) |
| 41 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 42 | 20 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → 𝑡 ⊆ ( 𝑆 ∖ { 𝑥 } ) ) |
| 43 | neldifsnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → ¬ 𝑥 ∈ ( 𝑆 ∖ { 𝑥 } ) ) | |
| 44 | 42 43 | ssneldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → ¬ 𝑥 ∈ 𝑡 ) |
| 45 | difsnb | ⊢ ( ¬ 𝑥 ∈ 𝑡 ↔ ( 𝑡 ∖ { 𝑥 } ) = 𝑡 ) | |
| 46 | 44 45 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → ( 𝑡 ∖ { 𝑥 } ) = 𝑡 ) |
| 47 | ssun1 | ⊢ 𝑡 ⊆ ( 𝑡 ∪ { 𝑥 } ) | |
| 48 | 47 37 | sseqtrrid | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → 𝑡 ⊆ 𝑠 ) |
| 49 | 48 | ssdifd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → ( 𝑡 ∖ { 𝑥 } ) ⊆ ( 𝑠 ∖ { 𝑥 } ) ) |
| 50 | 46 49 | eqsstrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → 𝑡 ⊆ ( 𝑠 ∖ { 𝑥 } ) ) |
| 51 | 24 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → ( 𝑡 ∪ { 𝑥 } ) ⊆ 𝑆 ) |
| 52 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → 𝑆 ⊆ 𝑋 ) |
| 53 | 51 52 | sstrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → ( 𝑡 ∪ { 𝑥 } ) ⊆ 𝑋 ) |
| 54 | 37 53 | eqsstrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → 𝑠 ⊆ 𝑋 ) |
| 55 | 54 | ssdifssd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → ( 𝑠 ∖ { 𝑥 } ) ⊆ 𝑋 ) |
| 56 | 41 2 50 55 | mrcssd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → ( 𝑁 ‘ 𝑡 ) ⊆ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) |
| 57 | 56 | sseld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → ( 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) → 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) ) |
| 58 | 57 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) ∧ 𝑠 ∈ 𝐼 ) → ( 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) → 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) ) |
| 59 | 40 58 | mtod | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) ∧ 𝑠 ∈ 𝐼 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) ) |
| 60 | 59 | ex | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) ∧ 𝑠 = ( 𝑡 ∪ { 𝑥 } ) ) → ( 𝑠 ∈ 𝐼 → ¬ 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) ) ) |
| 61 | 30 60 | rspcimdv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) → ( ∀ 𝑠 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑠 ∈ 𝐼 → ¬ 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) ) ) |
| 62 | 13 61 | biimtrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ) → ( ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 → ¬ 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) ) ) |
| 63 | 62 | impancom | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 ) → ( 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) → ¬ 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) ) ) |
| 64 | 63 | ralrimiv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 ) → ∀ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ¬ 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) ) |
| 65 | 4 | ssdifssd | ⊢ ( 𝜑 → ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ) |
| 66 | 1 2 65 | acsficl2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ ∃ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) ) ) |
| 67 | 66 | notbid | ⊢ ( 𝜑 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ ¬ ∃ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) ) ) |
| 68 | ralnex | ⊢ ( ∀ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ¬ 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) ↔ ¬ ∃ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) ) | |
| 69 | 67 68 | bitr4di | ⊢ ( 𝜑 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ ∀ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ¬ 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) ) ) |
| 70 | 69 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 ) → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ ∀ 𝑡 ∈ ( 𝒫 ( 𝑆 ∖ { 𝑥 } ) ∩ Fin ) ¬ 𝑥 ∈ ( 𝑁 ‘ 𝑡 ) ) ) |
| 71 | 64 70 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 72 | 71 | an32s | ⊢ ( ( ( 𝜑 ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 ) ∧ 𝑥 ∈ 𝑆 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 73 | 72 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 ) → ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 74 | 2 3 15 16 73 | ismri2dd | ⊢ ( ( 𝜑 ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 ) → 𝑆 ∈ 𝐼 ) |
| 75 | 14 74 | impbida | ⊢ ( 𝜑 → ( 𝑆 ∈ 𝐼 ↔ ( 𝒫 𝑆 ∩ Fin ) ⊆ 𝐼 ) ) |