This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl . Deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acsficld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| acsficld.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| acsficld.3 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | ||
| Assertion | acsficl2d | ⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑌 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsficld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| 2 | acsficld.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | acsficld.3 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | |
| 4 | 1 2 3 | acsficld | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ∪ ( 𝑁 “ ( 𝒫 𝑆 ∩ Fin ) ) ) |
| 5 | 4 | eleq2d | ⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ↔ 𝑌 ∈ ∪ ( 𝑁 “ ( 𝒫 𝑆 ∩ Fin ) ) ) ) |
| 6 | 1 | acsmred | ⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 7 | funmpt | ⊢ Fun ( 𝑧 ∈ 𝒫 𝑋 ↦ ∩ { 𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤 } ) | |
| 8 | 2 | mrcfval | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝑁 = ( 𝑧 ∈ 𝒫 𝑋 ↦ ∩ { 𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤 } ) ) |
| 9 | 8 | funeqd | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( Fun 𝑁 ↔ Fun ( 𝑧 ∈ 𝒫 𝑋 ↦ ∩ { 𝑤 ∈ 𝐴 ∣ 𝑧 ⊆ 𝑤 } ) ) ) |
| 10 | 7 9 | mpbiri | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → Fun 𝑁 ) |
| 11 | eluniima | ⊢ ( Fun 𝑁 → ( 𝑌 ∈ ∪ ( 𝑁 “ ( 𝒫 𝑆 ∩ Fin ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑌 ∈ ( 𝑁 ‘ 𝑥 ) ) ) | |
| 12 | 6 10 11 | 3syl | ⊢ ( 𝜑 → ( 𝑌 ∈ ∪ ( 𝑁 “ ( 𝒫 𝑆 ∩ Fin ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑌 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |
| 13 | 5 12 | bitrd | ⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑌 ∈ ( 𝑁 ‘ 𝑥 ) ) ) |