This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcimdv.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| rspcimdv.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 → 𝜒 ) ) | ||
| Assertion | rspcimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 → 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcimdv.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 2 | rspcimdv.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 → 𝜒 ) ) | |
| 3 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) ) | |
| 4 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐴 ) | |
| 5 | 4 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| 6 | 5 | biimprd | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝐴 ∈ 𝐵 → 𝑥 ∈ 𝐵 ) ) |
| 7 | 6 2 | imim12d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐵 → 𝜓 ) → ( 𝐴 ∈ 𝐵 → 𝜒 ) ) ) |
| 8 | 1 7 | spcimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) → ( 𝐴 ∈ 𝐵 → 𝜒 ) ) ) |
| 9 | 1 8 | mpid | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) → 𝜒 ) ) |
| 10 | 3 9 | biimtrid | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 → 𝜒 ) ) |