This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, if T is contained in the closure of S , there is a map f from T into the set of finite subsets of S such that the closure of U. ran f contains T . This is proven by applying acsficl2d to each element of T . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acsmapd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| acsmapd.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| acsmapd.3 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | ||
| acsmapd.4 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑁 ‘ 𝑆 ) ) | ||
| Assertion | acsmapd | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmapd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) | |
| 2 | acsmapd.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | acsmapd.3 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | |
| 4 | acsmapd.4 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑁 ‘ 𝑆 ) ) | |
| 5 | fvex | ⊢ ( 𝑁 ‘ 𝑆 ) ∈ V | |
| 6 | 5 | ssex | ⊢ ( 𝑇 ⊆ ( 𝑁 ‘ 𝑆 ) → 𝑇 ∈ V ) |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 8 | 4 | sseld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑁 ‘ 𝑆 ) ) ) |
| 9 | 1 2 3 | acsficl2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑁 ‘ 𝑆 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) ) ) |
| 10 | 8 9 | sylibd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑇 → ∃ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) ) ) |
| 11 | 10 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) ) |
| 12 | fveq2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 13 | 12 | eleq2d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) ↔ 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 14 | 13 | ac6sg | ⊢ ( 𝑇 ∈ V → ( ∀ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) |
| 15 | 7 11 14 | sylc | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 16 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ) | |
| 17 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 18 | nfv | ⊢ Ⅎ 𝑥 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) | |
| 19 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) | |
| 20 | 18 19 | nfan | ⊢ Ⅎ 𝑥 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 21 | 17 20 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 22 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) |
| 23 | 22 | acsmred | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 24 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ) | |
| 25 | 24 | ffnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑓 Fn 𝑇 ) |
| 26 | fnfvelrn | ⊢ ( ( 𝑓 Fn 𝑇 ∧ 𝑥 ∈ 𝑇 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) | |
| 27 | 25 26 | sylancom | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) |
| 28 | 27 | snssd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → { ( 𝑓 ‘ 𝑥 ) } ⊆ ran 𝑓 ) |
| 29 | 28 | unissd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ∪ { ( 𝑓 ‘ 𝑥 ) } ⊆ ∪ ran 𝑓 ) |
| 30 | frn | ⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ran 𝑓 ⊆ ( 𝒫 𝑆 ∩ Fin ) ) | |
| 31 | 30 | unissd | ⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ∪ ran 𝑓 ⊆ ∪ ( 𝒫 𝑆 ∩ Fin ) ) |
| 32 | unifpw | ⊢ ∪ ( 𝒫 𝑆 ∩ Fin ) = 𝑆 | |
| 33 | 31 32 | sseqtrdi | ⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ∪ ran 𝑓 ⊆ 𝑆 ) |
| 34 | 24 33 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ∪ ran 𝑓 ⊆ 𝑆 ) |
| 35 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑆 ⊆ 𝑋 ) |
| 36 | 34 35 | sstrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ∪ ran 𝑓 ⊆ 𝑋 ) |
| 37 | 23 2 29 36 | mrcssd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝑁 ‘ ∪ { ( 𝑓 ‘ 𝑥 ) } ) ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
| 38 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 39 | 38 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 40 | fvex | ⊢ ( 𝑓 ‘ 𝑥 ) ∈ V | |
| 41 | 40 | unisn | ⊢ ∪ { ( 𝑓 ‘ 𝑥 ) } = ( 𝑓 ‘ 𝑥 ) |
| 42 | 41 | fveq2i | ⊢ ( 𝑁 ‘ ∪ { ( 𝑓 ‘ 𝑥 ) } ) = ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) |
| 43 | 39 42 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( 𝑁 ‘ ∪ { ( 𝑓 ‘ 𝑥 ) } ) ) |
| 44 | 37 43 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
| 45 | 44 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
| 46 | 21 45 | alrimi | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
| 47 | df-ss | ⊢ ( 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) | |
| 48 | 46 47 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
| 49 | 16 48 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
| 50 | 49 | ex | ⊢ ( 𝜑 → ( ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) → ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) ) |
| 51 | 50 | eximdv | ⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) ) |
| 52 | 15 51 | mpd | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |