This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspsstrd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| sspsstrd.2 | ⊢ ( 𝜑 → 𝐵 ⊊ 𝐶 ) | ||
| Assertion | sspsstrd | ⊢ ( 𝜑 → 𝐴 ⊊ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspsstrd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | sspsstrd.2 | ⊢ ( 𝜑 → 𝐵 ⊊ 𝐶 ) | |
| 3 | sspsstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) → 𝐴 ⊊ 𝐶 ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → 𝐴 ⊊ 𝐶 ) |