This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| Assertion | ackbij1lem15 | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> -. ( F ` ( A i^i suc c ) ) = ( F ` ( B i^i suc c ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| 2 | simpr1 | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> c e. _om ) |
|
| 3 | ackbij1lem3 | |- ( c e. _om -> c e. ( ~P _om i^i Fin ) ) |
|
| 4 | 2 3 | syl | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> c e. ( ~P _om i^i Fin ) ) |
| 5 | simpr3 | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> -. c e. B ) |
|
| 6 | ackbij1lem1 | |- ( -. c e. B -> ( B i^i suc c ) = ( B i^i c ) ) |
|
| 7 | 5 6 | syl | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( B i^i suc c ) = ( B i^i c ) ) |
| 8 | inss2 | |- ( B i^i c ) C_ c |
|
| 9 | 7 8 | eqsstrdi | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( B i^i suc c ) C_ c ) |
| 10 | 1 | ackbij1lem12 | |- ( ( c e. ( ~P _om i^i Fin ) /\ ( B i^i suc c ) C_ c ) -> ( F ` ( B i^i suc c ) ) C_ ( F ` c ) ) |
| 11 | 4 9 10 | syl2anc | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( F ` ( B i^i suc c ) ) C_ ( F ` c ) ) |
| 12 | 1 | ackbij1lem10 | |- F : ( ~P _om i^i Fin ) --> _om |
| 13 | 12 | ffvelcdmi | |- ( c e. ( ~P _om i^i Fin ) -> ( F ` c ) e. _om ) |
| 14 | nnon | |- ( ( F ` c ) e. _om -> ( F ` c ) e. On ) |
|
| 15 | onpsssuc | |- ( ( F ` c ) e. On -> ( F ` c ) C. suc ( F ` c ) ) |
|
| 16 | 4 13 14 15 | 4syl | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( F ` c ) C. suc ( F ` c ) ) |
| 17 | 1 | ackbij1lem14 | |- ( c e. _om -> ( F ` { c } ) = suc ( F ` c ) ) |
| 18 | 2 17 | syl | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( F ` { c } ) = suc ( F ` c ) ) |
| 19 | 18 | psseq2d | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( ( F ` c ) C. ( F ` { c } ) <-> ( F ` c ) C. suc ( F ` c ) ) ) |
| 20 | 16 19 | mpbird | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( F ` c ) C. ( F ` { c } ) ) |
| 21 | simpll | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> A e. ( ~P _om i^i Fin ) ) |
|
| 22 | inss1 | |- ( A i^i suc c ) C_ A |
|
| 23 | 1 | ackbij1lem11 | |- ( ( A e. ( ~P _om i^i Fin ) /\ ( A i^i suc c ) C_ A ) -> ( A i^i suc c ) e. ( ~P _om i^i Fin ) ) |
| 24 | 21 22 23 | sylancl | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( A i^i suc c ) e. ( ~P _om i^i Fin ) ) |
| 25 | ssun1 | |- { c } C_ ( { c } u. ( A i^i c ) ) |
|
| 26 | simpr2 | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> c e. A ) |
|
| 27 | ackbij1lem2 | |- ( c e. A -> ( A i^i suc c ) = ( { c } u. ( A i^i c ) ) ) |
|
| 28 | 26 27 | syl | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( A i^i suc c ) = ( { c } u. ( A i^i c ) ) ) |
| 29 | 25 28 | sseqtrrid | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> { c } C_ ( A i^i suc c ) ) |
| 30 | 1 | ackbij1lem12 | |- ( ( ( A i^i suc c ) e. ( ~P _om i^i Fin ) /\ { c } C_ ( A i^i suc c ) ) -> ( F ` { c } ) C_ ( F ` ( A i^i suc c ) ) ) |
| 31 | 24 29 30 | syl2anc | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( F ` { c } ) C_ ( F ` ( A i^i suc c ) ) ) |
| 32 | 20 31 | psssstrd | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( F ` c ) C. ( F ` ( A i^i suc c ) ) ) |
| 33 | 11 32 | sspsstrd | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( F ` ( B i^i suc c ) ) C. ( F ` ( A i^i suc c ) ) ) |
| 34 | 33 | pssned | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( F ` ( B i^i suc c ) ) =/= ( F ` ( A i^i suc c ) ) ) |
| 35 | 34 | necomd | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> ( F ` ( A i^i suc c ) ) =/= ( F ` ( B i^i suc c ) ) ) |
| 36 | 35 | neneqd | |- ( ( ( A e. ( ~P _om i^i Fin ) /\ B e. ( ~P _om i^i Fin ) ) /\ ( c e. _om /\ c e. A /\ -. c e. B ) ) -> -. ( F ` ( A i^i suc c ) ) = ( F ` ( B i^i suc c ) ) ) |