This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac3 . (Contributed by NM, 2-Apr-2004) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | aceq3lem.1 | ⊢ 𝐹 = ( 𝑤 ∈ dom 𝑦 ↦ ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) | |
| Assertion | aceq3lem | ⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aceq3lem.1 | ⊢ 𝐹 = ( 𝑤 ∈ dom 𝑦 ↦ ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 2 | rnex | ⊢ ran 𝑦 ∈ V |
| 4 | 3 | pwex | ⊢ 𝒫 ran 𝑦 ∈ V |
| 5 | raleq | ⊢ ( 𝑥 = 𝒫 ran 𝑦 → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) | |
| 6 | 5 | exbidv | ⊢ ( 𝑥 = 𝒫 ran 𝑦 → ( ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∃ 𝑓 ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 7 | 4 6 | spcv | ⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 8 | df-mpt | ⊢ ( 𝑤 ∈ dom 𝑦 ↦ ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) = { 〈 𝑤 , ℎ 〉 ∣ ( 𝑤 ∈ dom 𝑦 ∧ ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) } | |
| 9 | 1 8 | eqtri | ⊢ 𝐹 = { 〈 𝑤 , ℎ 〉 ∣ ( 𝑤 ∈ dom 𝑦 ∧ ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) } |
| 10 | vex | ⊢ 𝑤 ∈ V | |
| 11 | 10 | eldm | ⊢ ( 𝑤 ∈ dom 𝑦 ↔ ∃ 𝑢 𝑤 𝑦 𝑢 ) |
| 12 | abn0 | ⊢ ( { 𝑢 ∣ 𝑤 𝑦 𝑢 } ≠ ∅ ↔ ∃ 𝑢 𝑤 𝑦 𝑢 ) | |
| 13 | 11 12 | bitr4i | ⊢ ( 𝑤 ∈ dom 𝑦 ↔ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ≠ ∅ ) |
| 14 | vex | ⊢ 𝑢 ∈ V | |
| 15 | 10 14 | brelrn | ⊢ ( 𝑤 𝑦 𝑢 → 𝑢 ∈ ran 𝑦 ) |
| 16 | 15 | abssi | ⊢ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ⊆ ran 𝑦 |
| 17 | 3 16 | elpwi2 | ⊢ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ∈ 𝒫 ran 𝑦 |
| 18 | neeq1 | ⊢ ( 𝑧 = { 𝑢 ∣ 𝑤 𝑦 𝑢 } → ( 𝑧 ≠ ∅ ↔ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ≠ ∅ ) ) | |
| 19 | fveq2 | ⊢ ( 𝑧 = { 𝑢 ∣ 𝑤 𝑦 𝑢 } → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) | |
| 20 | id | ⊢ ( 𝑧 = { 𝑢 ∣ 𝑤 𝑦 𝑢 } → 𝑧 = { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) | |
| 21 | 19 20 | eleq12d | ⊢ ( 𝑧 = { 𝑢 ∣ 𝑤 𝑦 𝑢 } → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) |
| 22 | 18 21 | imbi12d | ⊢ ( 𝑧 = { 𝑢 ∣ 𝑤 𝑦 𝑢 } → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( { 𝑢 ∣ 𝑤 𝑦 𝑢 } ≠ ∅ → ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) ) |
| 23 | 22 | rspcv | ⊢ ( { 𝑢 ∣ 𝑤 𝑦 𝑢 } ∈ 𝒫 ran 𝑦 → ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( { 𝑢 ∣ 𝑤 𝑦 𝑢 } ≠ ∅ → ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) ) |
| 24 | 17 23 | ax-mp | ⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( { 𝑢 ∣ 𝑤 𝑦 𝑢 } ≠ ∅ → ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) |
| 25 | 13 24 | biimtrid | ⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝑤 ∈ dom 𝑦 → ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) |
| 26 | 25 | imp | ⊢ ( ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ dom 𝑦 ) → ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) |
| 27 | fvex | ⊢ ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ V | |
| 28 | breq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) → ( 𝑤 𝑦 𝑧 ↔ 𝑤 𝑦 ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) ) | |
| 29 | breq2 | ⊢ ( 𝑢 = 𝑧 → ( 𝑤 𝑦 𝑢 ↔ 𝑤 𝑦 𝑧 ) ) | |
| 30 | 29 | cbvabv | ⊢ { 𝑢 ∣ 𝑤 𝑦 𝑢 } = { 𝑧 ∣ 𝑤 𝑦 𝑧 } |
| 31 | 27 28 30 | elab2 | ⊢ ( ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ∈ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ↔ 𝑤 𝑦 ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) |
| 32 | 26 31 | sylib | ⊢ ( ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ dom 𝑦 ) → 𝑤 𝑦 ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) |
| 33 | breq2 | ⊢ ( ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) → ( 𝑤 𝑦 ℎ ↔ 𝑤 𝑦 ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) ) | |
| 34 | 32 33 | syl5ibrcom | ⊢ ( ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ∧ 𝑤 ∈ dom 𝑦 ) → ( ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) → 𝑤 𝑦 ℎ ) ) |
| 35 | 34 | expimpd | ⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ( ( 𝑤 ∈ dom 𝑦 ∧ ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) → 𝑤 𝑦 ℎ ) ) |
| 36 | 35 | ssopab2dv | ⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → { 〈 𝑤 , ℎ 〉 ∣ ( 𝑤 ∈ dom 𝑦 ∧ ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) } ⊆ { 〈 𝑤 , ℎ 〉 ∣ 𝑤 𝑦 ℎ } ) |
| 37 | opabss | ⊢ { 〈 𝑤 , ℎ 〉 ∣ 𝑤 𝑦 ℎ } ⊆ 𝑦 | |
| 38 | 36 37 | sstrdi | ⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → { 〈 𝑤 , ℎ 〉 ∣ ( 𝑤 ∈ dom 𝑦 ∧ ℎ = ( 𝑓 ‘ { 𝑢 ∣ 𝑤 𝑦 𝑢 } ) ) } ⊆ 𝑦 ) |
| 39 | 9 38 | eqsstrid | ⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → 𝐹 ⊆ 𝑦 ) |
| 40 | 27 1 | fnmpti | ⊢ 𝐹 Fn dom 𝑦 |
| 41 | 2 | ssex | ⊢ ( 𝐹 ⊆ 𝑦 → 𝐹 ∈ V ) |
| 42 | 41 | adantr | ⊢ ( ( 𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦 ) → 𝐹 ∈ V ) |
| 43 | sseq1 | ⊢ ( 𝑔 = 𝐹 → ( 𝑔 ⊆ 𝑦 ↔ 𝐹 ⊆ 𝑦 ) ) | |
| 44 | fneq1 | ⊢ ( 𝑔 = 𝐹 → ( 𝑔 Fn dom 𝑦 ↔ 𝐹 Fn dom 𝑦 ) ) | |
| 45 | 43 44 | anbi12d | ⊢ ( 𝑔 = 𝐹 → ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ↔ ( 𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦 ) ) ) |
| 46 | 45 | spcegv | ⊢ ( 𝐹 ∈ V → ( ( 𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦 ) → ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) ) |
| 47 | 42 46 | mpcom | ⊢ ( ( 𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦 ) → ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) |
| 48 | 39 40 47 | sylancl | ⊢ ( ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) |
| 49 | 48 | exlimiv | ⊢ ( ∃ 𝑓 ∀ 𝑧 ∈ 𝒫 ran 𝑦 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) |
| 50 | 7 49 | syl | ⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ) |
| 51 | sseq1 | ⊢ ( 𝑔 = 𝑓 → ( 𝑔 ⊆ 𝑦 ↔ 𝑓 ⊆ 𝑦 ) ) | |
| 52 | fneq1 | ⊢ ( 𝑔 = 𝑓 → ( 𝑔 Fn dom 𝑦 ↔ 𝑓 Fn dom 𝑦 ) ) | |
| 53 | 51 52 | anbi12d | ⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ↔ ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) ) |
| 54 | 53 | cbvexvw | ⊢ ( ∃ 𝑔 ( 𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦 ) ↔ ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) |
| 55 | 50 54 | sylib | ⊢ ( ∀ 𝑥 ∃ 𝑓 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦 ) ) |