This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac3 . (Contributed by NM, 2-Apr-2004) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | aceq3lem.1 | |- F = ( w e. dom y |-> ( f ` { u | w y u } ) ) |
|
| Assertion | aceq3lem | |- ( A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) -> E. f ( f C_ y /\ f Fn dom y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aceq3lem.1 | |- F = ( w e. dom y |-> ( f ` { u | w y u } ) ) |
|
| 2 | vex | |- y e. _V |
|
| 3 | 2 | rnex | |- ran y e. _V |
| 4 | 3 | pwex | |- ~P ran y e. _V |
| 5 | raleq | |- ( x = ~P ran y -> ( A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) <-> A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) ) ) |
|
| 6 | 5 | exbidv | |- ( x = ~P ran y -> ( E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) <-> E. f A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) ) ) |
| 7 | 4 6 | spcv | |- ( A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) -> E. f A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) ) |
| 8 | df-mpt | |- ( w e. dom y |-> ( f ` { u | w y u } ) ) = { <. w , h >. | ( w e. dom y /\ h = ( f ` { u | w y u } ) ) } |
|
| 9 | 1 8 | eqtri | |- F = { <. w , h >. | ( w e. dom y /\ h = ( f ` { u | w y u } ) ) } |
| 10 | vex | |- w e. _V |
|
| 11 | 10 | eldm | |- ( w e. dom y <-> E. u w y u ) |
| 12 | abn0 | |- ( { u | w y u } =/= (/) <-> E. u w y u ) |
|
| 13 | 11 12 | bitr4i | |- ( w e. dom y <-> { u | w y u } =/= (/) ) |
| 14 | vex | |- u e. _V |
|
| 15 | 10 14 | brelrn | |- ( w y u -> u e. ran y ) |
| 16 | 15 | abssi | |- { u | w y u } C_ ran y |
| 17 | 3 16 | elpwi2 | |- { u | w y u } e. ~P ran y |
| 18 | neeq1 | |- ( z = { u | w y u } -> ( z =/= (/) <-> { u | w y u } =/= (/) ) ) |
|
| 19 | fveq2 | |- ( z = { u | w y u } -> ( f ` z ) = ( f ` { u | w y u } ) ) |
|
| 20 | id | |- ( z = { u | w y u } -> z = { u | w y u } ) |
|
| 21 | 19 20 | eleq12d | |- ( z = { u | w y u } -> ( ( f ` z ) e. z <-> ( f ` { u | w y u } ) e. { u | w y u } ) ) |
| 22 | 18 21 | imbi12d | |- ( z = { u | w y u } -> ( ( z =/= (/) -> ( f ` z ) e. z ) <-> ( { u | w y u } =/= (/) -> ( f ` { u | w y u } ) e. { u | w y u } ) ) ) |
| 23 | 22 | rspcv | |- ( { u | w y u } e. ~P ran y -> ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> ( { u | w y u } =/= (/) -> ( f ` { u | w y u } ) e. { u | w y u } ) ) ) |
| 24 | 17 23 | ax-mp | |- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> ( { u | w y u } =/= (/) -> ( f ` { u | w y u } ) e. { u | w y u } ) ) |
| 25 | 13 24 | biimtrid | |- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> ( w e. dom y -> ( f ` { u | w y u } ) e. { u | w y u } ) ) |
| 26 | 25 | imp | |- ( ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) /\ w e. dom y ) -> ( f ` { u | w y u } ) e. { u | w y u } ) |
| 27 | fvex | |- ( f ` { u | w y u } ) e. _V |
|
| 28 | breq2 | |- ( z = ( f ` { u | w y u } ) -> ( w y z <-> w y ( f ` { u | w y u } ) ) ) |
|
| 29 | breq2 | |- ( u = z -> ( w y u <-> w y z ) ) |
|
| 30 | 29 | cbvabv | |- { u | w y u } = { z | w y z } |
| 31 | 27 28 30 | elab2 | |- ( ( f ` { u | w y u } ) e. { u | w y u } <-> w y ( f ` { u | w y u } ) ) |
| 32 | 26 31 | sylib | |- ( ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) /\ w e. dom y ) -> w y ( f ` { u | w y u } ) ) |
| 33 | breq2 | |- ( h = ( f ` { u | w y u } ) -> ( w y h <-> w y ( f ` { u | w y u } ) ) ) |
|
| 34 | 32 33 | syl5ibrcom | |- ( ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) /\ w e. dom y ) -> ( h = ( f ` { u | w y u } ) -> w y h ) ) |
| 35 | 34 | expimpd | |- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> ( ( w e. dom y /\ h = ( f ` { u | w y u } ) ) -> w y h ) ) |
| 36 | 35 | ssopab2dv | |- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> { <. w , h >. | ( w e. dom y /\ h = ( f ` { u | w y u } ) ) } C_ { <. w , h >. | w y h } ) |
| 37 | opabss | |- { <. w , h >. | w y h } C_ y |
|
| 38 | 36 37 | sstrdi | |- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> { <. w , h >. | ( w e. dom y /\ h = ( f ` { u | w y u } ) ) } C_ y ) |
| 39 | 9 38 | eqsstrid | |- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> F C_ y ) |
| 40 | 27 1 | fnmpti | |- F Fn dom y |
| 41 | 2 | ssex | |- ( F C_ y -> F e. _V ) |
| 42 | 41 | adantr | |- ( ( F C_ y /\ F Fn dom y ) -> F e. _V ) |
| 43 | sseq1 | |- ( g = F -> ( g C_ y <-> F C_ y ) ) |
|
| 44 | fneq1 | |- ( g = F -> ( g Fn dom y <-> F Fn dom y ) ) |
|
| 45 | 43 44 | anbi12d | |- ( g = F -> ( ( g C_ y /\ g Fn dom y ) <-> ( F C_ y /\ F Fn dom y ) ) ) |
| 46 | 45 | spcegv | |- ( F e. _V -> ( ( F C_ y /\ F Fn dom y ) -> E. g ( g C_ y /\ g Fn dom y ) ) ) |
| 47 | 42 46 | mpcom | |- ( ( F C_ y /\ F Fn dom y ) -> E. g ( g C_ y /\ g Fn dom y ) ) |
| 48 | 39 40 47 | sylancl | |- ( A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> E. g ( g C_ y /\ g Fn dom y ) ) |
| 49 | 48 | exlimiv | |- ( E. f A. z e. ~P ran y ( z =/= (/) -> ( f ` z ) e. z ) -> E. g ( g C_ y /\ g Fn dom y ) ) |
| 50 | 7 49 | syl | |- ( A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) -> E. g ( g C_ y /\ g Fn dom y ) ) |
| 51 | sseq1 | |- ( g = f -> ( g C_ y <-> f C_ y ) ) |
|
| 52 | fneq1 | |- ( g = f -> ( g Fn dom y <-> f Fn dom y ) ) |
|
| 53 | 51 52 | anbi12d | |- ( g = f -> ( ( g C_ y /\ g Fn dom y ) <-> ( f C_ y /\ f Fn dom y ) ) ) |
| 54 | 53 | cbvexvw | |- ( E. g ( g C_ y /\ g Fn dom y ) <-> E. f ( f C_ y /\ f Fn dom y ) ) |
| 55 | 50 54 | sylib | |- ( A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) -> E. f ( f C_ y /\ f Fn dom y ) ) |