This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a negative is the same as that of the positive. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abvneg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| abvneg.p | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| Assertion | abvneg | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abvneg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | abvneg.p | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 4 | 1 | abvrcl | ⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 6 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 7 | 4 6 | syl | ⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Grp ) |
| 8 | 2 3 | grpinvcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 9 | 7 8 | sylan | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 10 | simpr | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 11 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 13 | 2 11 12 | ring1eq0 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → ( 𝑁 ‘ 𝑋 ) = 𝑋 ) ) |
| 14 | 5 9 10 13 | syl3anc | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → ( 𝑁 ‘ 𝑋 ) = 𝑋 ) ) |
| 15 | 14 | imp | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝑋 ) = 𝑋 ) |
| 16 | 15 | fveq2d | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 17 | 2 11 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 18 | 4 17 | syl | ⊢ ( 𝐹 ∈ 𝐴 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 19 | 2 3 | grpinvcl | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
| 20 | 7 18 19 | syl2anc | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
| 21 | 1 2 | abvcl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ ℝ ) |
| 22 | 20 21 | mpdan | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ ℝ ) |
| 23 | 22 | recnd | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ ℂ ) |
| 24 | 23 | sqvald | ⊢ ( 𝐹 ∈ 𝐴 → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
| 25 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 26 | 1 2 25 | abvmul | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
| 27 | 20 20 26 | mpd3an23 | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) ) |
| 28 | 2 25 3 4 20 18 | ringmneg2 | ⊢ ( 𝐹 ∈ 𝐴 → ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
| 29 | 2 25 11 3 4 18 | ringnegl | ⊢ ( 𝐹 ∈ 𝐴 → ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 30 | 29 | fveq2d | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝑁 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑁 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 31 | 2 3 | grpinvinv | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 32 | 7 18 31 | syl2anc | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝑁 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 33 | 28 30 32 | 3eqtrd | ⊢ ( 𝐹 ∈ 𝐴 → ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 34 | 33 | fveq2d | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 35 | 24 27 34 | 3eqtr2d | ⊢ ( 𝐹 ∈ 𝐴 → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 37 | 1 11 12 | abv1z | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 38 | 36 37 | eqtrd | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = 1 ) |
| 39 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 40 | 38 39 | eqtr4di | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 41 | 1 2 | abvge0 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) → 0 ≤ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 42 | 20 41 | mpdan | ⊢ ( 𝐹 ∈ 𝐴 → 0 ≤ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 43 | 1re | ⊢ 1 ∈ ℝ | |
| 44 | 0le1 | ⊢ 0 ≤ 1 | |
| 45 | sq11 | ⊢ ( ( ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = 1 ) ) | |
| 46 | 43 44 45 | mpanr12 | ⊢ ( ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ) → ( ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = 1 ) ) |
| 47 | 22 42 46 | syl2anc | ⊢ ( 𝐹 ∈ 𝐴 → ( ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = 1 ) ) |
| 48 | 47 | biimpa | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) → ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = 1 ) |
| 49 | 40 48 | syldan | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = 1 ) |
| 50 | 49 | adantlr | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) = 1 ) |
| 51 | 50 | oveq1d | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ 𝑋 ) ) = ( 1 · ( 𝐹 ‘ 𝑋 ) ) ) |
| 52 | simpl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → 𝐹 ∈ 𝐴 ) | |
| 53 | 20 | adantr | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
| 54 | 1 2 25 | abvmul | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ 𝑋 ) ) ) |
| 55 | 52 53 10 54 | syl3anc | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ 𝑋 ) ) ) |
| 56 | 2 25 11 3 5 10 | ringnegl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| 57 | 56 | fveq2d | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 58 | 55 57 | eqtr3d | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐹 ‘ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ) · ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 60 | 51 59 | eqtr3d | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 1 · ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) ) |
| 61 | 1 2 | abvcl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| 62 | 61 | recnd | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
| 63 | 62 | mullidd | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 1 · ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 64 | 63 | adantr | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 1 · ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 65 | 60 64 | eqtr3d | ⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 66 | 16 65 | pm2.61dane | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |