This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abvneg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| abvsubtri.p | ⊢ − = ( -g ‘ 𝑅 ) | ||
| Assertion | abvsubtri | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 − 𝑌 ) ) ≤ ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abvneg.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | abvsubtri.p | ⊢ − = ( -g ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) | |
| 6 | 2 4 5 3 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 8 | 7 | fveq2d | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 − 𝑌 ) ) = ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 9 | 1 | abvrcl | ⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 11 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
| 13 | simp3 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 14 | 2 5 | grpinvcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 15 | 12 13 14 | syl2anc | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 16 | 1 2 4 | abvtri | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) ≤ ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 17 | 15 16 | syld3an3 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) ≤ ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) ) |
| 18 | 1 2 5 | abvneg | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 19 | 18 | 3adant2 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 20 | 19 | oveq2d | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) |
| 21 | 17 20 | breqtrd | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑌 ) ) ) ≤ ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) |
| 22 | 8 21 | eqbrtrd | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 − 𝑌 ) ) ≤ ( ( 𝐹 ‘ 𝑋 ) + ( 𝐹 ‘ 𝑌 ) ) ) |