This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvf.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abvf.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | abvcl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvf.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abvf.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | 1 2 | abvf | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 : 𝐵 ⟶ ℝ ) |
| 4 | 3 | ffvelcdmda | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ℝ ) |