This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| abv1.p | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| abv1z.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | abv1z | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | ⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) | |
| 2 | abv1.p | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | abv1z.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 1 | abvrcl | ⊢ ( 𝐹 ∈ 𝐴 → 𝑅 ∈ Ring ) |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | 5 2 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 7 | 4 6 | syl | ⊢ ( 𝐹 ∈ 𝐴 → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 8 | 1 5 | abvcl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 9 | 7 8 | mpdan | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 11 | 10 | recnd | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) ∈ ℂ ) |
| 12 | simpl | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 𝐹 ∈ 𝐴 ) | |
| 13 | 7 | adantr | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 14 | simpr | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → 1 ≠ 0 ) | |
| 15 | 1 5 3 | abvne0 | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ∈ ( Base ‘ 𝑅 ) ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) ≠ 0 ) |
| 16 | 12 13 14 15 | syl3anc | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) ≠ 0 ) |
| 17 | 11 11 16 | divcan3d | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( ( ( 𝐹 ‘ 1 ) · ( 𝐹 ‘ 1 ) ) / ( 𝐹 ‘ 1 ) ) = ( 𝐹 ‘ 1 ) ) |
| 18 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 19 | 5 18 2 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) 1 ) = 1 ) |
| 20 | 4 13 19 | syl2an2r | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 1 ( .r ‘ 𝑅 ) 1 ) = 1 ) |
| 21 | 20 | fveq2d | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ ( 1 ( .r ‘ 𝑅 ) 1 ) ) = ( 𝐹 ‘ 1 ) ) |
| 22 | 1 5 18 | abvmul | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ∈ ( Base ‘ 𝑅 ) ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( 1 ( .r ‘ 𝑅 ) 1 ) ) = ( ( 𝐹 ‘ 1 ) · ( 𝐹 ‘ 1 ) ) ) |
| 23 | 12 13 13 22 | syl3anc | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ ( 1 ( .r ‘ 𝑅 ) 1 ) ) = ( ( 𝐹 ‘ 1 ) · ( 𝐹 ‘ 1 ) ) ) |
| 24 | 21 23 | eqtr3d | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) = ( ( 𝐹 ‘ 1 ) · ( 𝐹 ‘ 1 ) ) ) |
| 25 | 24 | oveq1d | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( ( 𝐹 ‘ 1 ) / ( 𝐹 ‘ 1 ) ) = ( ( ( 𝐹 ‘ 1 ) · ( 𝐹 ‘ 1 ) ) / ( 𝐹 ‘ 1 ) ) ) |
| 26 | 11 16 | dividd | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( ( 𝐹 ‘ 1 ) / ( 𝐹 ‘ 1 ) ) = 1 ) |
| 27 | 25 26 | eqtr3d | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( ( ( 𝐹 ‘ 1 ) · ( 𝐹 ‘ 1 ) ) / ( 𝐹 ‘ 1 ) ) = 1 ) |
| 28 | 17 27 | eqtr3d | ⊢ ( ( 𝐹 ∈ 𝐴 ∧ 1 ≠ 0 ) → ( 𝐹 ‘ 1 ) = 1 ) |