This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mul.1 | ⊢ 𝐴 ∈ ℂ | |
| mul.2 | ⊢ 𝐵 ∈ ℂ | ||
| mul.3 | ⊢ 𝐶 ∈ ℂ | ||
| Assertion | mul12i | ⊢ ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐵 · ( 𝐴 · 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | mul.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | mul.3 | ⊢ 𝐶 ∈ ℂ | |
| 4 | mul12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐵 · ( 𝐴 · 𝐶 ) ) ) | |
| 5 | 1 2 3 4 | mp3an | ⊢ ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐵 · ( 𝐴 · 𝐶 ) ) |