This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019) (Proof shortened by AV, 27-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringlpir | |- ZZring e. LPIR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringring | |- ZZring e. Ring |
|
| 2 | eleq1 | |- ( x = { 0 } -> ( x e. ( LPIdeal ` ZZring ) <-> { 0 } e. ( LPIdeal ` ZZring ) ) ) |
|
| 3 | simpl | |- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> x e. ( LIdeal ` ZZring ) ) |
|
| 4 | simpr | |- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> x =/= { 0 } ) |
|
| 5 | eqid | |- inf ( ( x i^i NN ) , RR , < ) = inf ( ( x i^i NN ) , RR , < ) |
|
| 6 | 3 4 5 | zringlpirlem2 | |- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> inf ( ( x i^i NN ) , RR , < ) e. x ) |
| 7 | simpll | |- ( ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) /\ z e. x ) -> x e. ( LIdeal ` ZZring ) ) |
|
| 8 | simplr | |- ( ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) /\ z e. x ) -> x =/= { 0 } ) |
|
| 9 | simpr | |- ( ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) /\ z e. x ) -> z e. x ) |
|
| 10 | 7 8 5 9 | zringlpirlem3 | |- ( ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) /\ z e. x ) -> inf ( ( x i^i NN ) , RR , < ) || z ) |
| 11 | 10 | ralrimiva | |- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> A. z e. x inf ( ( x i^i NN ) , RR , < ) || z ) |
| 12 | breq1 | |- ( y = inf ( ( x i^i NN ) , RR , < ) -> ( y || z <-> inf ( ( x i^i NN ) , RR , < ) || z ) ) |
|
| 13 | 12 | ralbidv | |- ( y = inf ( ( x i^i NN ) , RR , < ) -> ( A. z e. x y || z <-> A. z e. x inf ( ( x i^i NN ) , RR , < ) || z ) ) |
| 14 | 13 | rspcev | |- ( ( inf ( ( x i^i NN ) , RR , < ) e. x /\ A. z e. x inf ( ( x i^i NN ) , RR , < ) || z ) -> E. y e. x A. z e. x y || z ) |
| 15 | 6 11 14 | syl2anc | |- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> E. y e. x A. z e. x y || z ) |
| 16 | eqid | |- ( LIdeal ` ZZring ) = ( LIdeal ` ZZring ) |
|
| 17 | eqid | |- ( LPIdeal ` ZZring ) = ( LPIdeal ` ZZring ) |
|
| 18 | dvdsrzring | |- || = ( ||r ` ZZring ) |
|
| 19 | 16 17 18 | lpigen | |- ( ( ZZring e. Ring /\ x e. ( LIdeal ` ZZring ) ) -> ( x e. ( LPIdeal ` ZZring ) <-> E. y e. x A. z e. x y || z ) ) |
| 20 | 1 19 | mpan | |- ( x e. ( LIdeal ` ZZring ) -> ( x e. ( LPIdeal ` ZZring ) <-> E. y e. x A. z e. x y || z ) ) |
| 21 | 20 | adantr | |- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> ( x e. ( LPIdeal ` ZZring ) <-> E. y e. x A. z e. x y || z ) ) |
| 22 | 15 21 | mpbird | |- ( ( x e. ( LIdeal ` ZZring ) /\ x =/= { 0 } ) -> x e. ( LPIdeal ` ZZring ) ) |
| 23 | zring0 | |- 0 = ( 0g ` ZZring ) |
|
| 24 | 17 23 | lpi0 | |- ( ZZring e. Ring -> { 0 } e. ( LPIdeal ` ZZring ) ) |
| 25 | 1 24 | mp1i | |- ( x e. ( LIdeal ` ZZring ) -> { 0 } e. ( LPIdeal ` ZZring ) ) |
| 26 | 2 22 25 | pm2.61ne | |- ( x e. ( LIdeal ` ZZring ) -> x e. ( LPIdeal ` ZZring ) ) |
| 27 | 26 | ssriv | |- ( LIdeal ` ZZring ) C_ ( LPIdeal ` ZZring ) |
| 28 | 17 16 | islpir2 | |- ( ZZring e. LPIR <-> ( ZZring e. Ring /\ ( LIdeal ` ZZring ) C_ ( LPIdeal ` ZZring ) ) ) |
| 29 | 1 27 28 | mpbir2an | |- ZZring e. LPIR |