This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019) (Revised by AV, 10-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringinvg | |- ( A e. ZZ -> -u A = ( ( invg ` ZZring ) ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 2 | 1 | negidd | |- ( A e. ZZ -> ( A + -u A ) = 0 ) |
| 3 | zringgrp | |- ZZring e. Grp |
|
| 4 | id | |- ( A e. ZZ -> A e. ZZ ) |
|
| 5 | znegcl | |- ( A e. ZZ -> -u A e. ZZ ) |
|
| 6 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 7 | zringplusg | |- + = ( +g ` ZZring ) |
|
| 8 | zring0 | |- 0 = ( 0g ` ZZring ) |
|
| 9 | eqid | |- ( invg ` ZZring ) = ( invg ` ZZring ) |
|
| 10 | 6 7 8 9 | grpinvid1 | |- ( ( ZZring e. Grp /\ A e. ZZ /\ -u A e. ZZ ) -> ( ( ( invg ` ZZring ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) |
| 11 | 3 4 5 10 | mp3an2i | |- ( A e. ZZ -> ( ( ( invg ` ZZring ) ` A ) = -u A <-> ( A + -u A ) = 0 ) ) |
| 12 | 2 11 | mpbird | |- ( A e. ZZ -> ( ( invg ` ZZring ) ` A ) = -u A ) |
| 13 | 12 | eqcomd | |- ( A e. ZZ -> -u A = ( ( invg ` ZZring ) ` A ) ) |