This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zringlpir . A nonzero ideal of integers contains the least positive element. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019) (Revised by AV, 27-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zringlpirlem.i | |- ( ph -> I e. ( LIdeal ` ZZring ) ) |
|
| zringlpirlem.n0 | |- ( ph -> I =/= { 0 } ) |
||
| zringlpirlem.g | |- G = inf ( ( I i^i NN ) , RR , < ) |
||
| Assertion | zringlpirlem2 | |- ( ph -> G e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringlpirlem.i | |- ( ph -> I e. ( LIdeal ` ZZring ) ) |
|
| 2 | zringlpirlem.n0 | |- ( ph -> I =/= { 0 } ) |
|
| 3 | zringlpirlem.g | |- G = inf ( ( I i^i NN ) , RR , < ) |
|
| 4 | inss2 | |- ( I i^i NN ) C_ NN |
|
| 5 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 6 | 4 5 | sseqtri | |- ( I i^i NN ) C_ ( ZZ>= ` 1 ) |
| 7 | 1 2 | zringlpirlem1 | |- ( ph -> ( I i^i NN ) =/= (/) ) |
| 8 | infssuzcl | |- ( ( ( I i^i NN ) C_ ( ZZ>= ` 1 ) /\ ( I i^i NN ) =/= (/) ) -> inf ( ( I i^i NN ) , RR , < ) e. ( I i^i NN ) ) |
|
| 9 | 6 7 8 | sylancr | |- ( ph -> inf ( ( I i^i NN ) , RR , < ) e. ( I i^i NN ) ) |
| 10 | 9 | elin1d | |- ( ph -> inf ( ( I i^i NN ) , RR , < ) e. I ) |
| 11 | 3 10 | eqeltrid | |- ( ph -> G e. I ) |