This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Submonoids have the same identity. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | submmnd.h | |- H = ( M |`s S ) |
|
| subm0.z | |- .0. = ( 0g ` M ) |
||
| Assertion | subm0 | |- ( S e. ( SubMnd ` M ) -> .0. = ( 0g ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submmnd.h | |- H = ( M |`s S ) |
|
| 2 | subm0.z | |- .0. = ( 0g ` M ) |
|
| 3 | submrcl | |- ( S e. ( SubMnd ` M ) -> M e. Mnd ) |
|
| 4 | 1 | submmnd | |- ( S e. ( SubMnd ` M ) -> H e. Mnd ) |
| 5 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 6 | 5 | submss | |- ( S e. ( SubMnd ` M ) -> S C_ ( Base ` M ) ) |
| 7 | 2 | subm0cl | |- ( S e. ( SubMnd ` M ) -> .0. e. S ) |
| 8 | 5 2 1 | submnd0 | |- ( ( ( M e. Mnd /\ H e. Mnd ) /\ ( S C_ ( Base ` M ) /\ .0. e. S ) ) -> .0. = ( 0g ` H ) ) |
| 9 | 3 4 6 7 8 | syl22anc | |- ( S e. ( SubMnd ` M ) -> .0. = ( 0g ` H ) ) |