This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrs1mnd.1 | |- R = ( RR*s |`s ( RR* \ { -oo } ) ) |
|
| Assertion | xrge0subm | |- ( 0 [,] +oo ) e. ( SubMnd ` R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrs1mnd.1 | |- R = ( RR*s |`s ( RR* \ { -oo } ) ) |
|
| 2 | simpl | |- ( ( x e. RR* /\ 0 <_ x ) -> x e. RR* ) |
|
| 3 | ge0nemnf | |- ( ( x e. RR* /\ 0 <_ x ) -> x =/= -oo ) |
|
| 4 | 2 3 | jca | |- ( ( x e. RR* /\ 0 <_ x ) -> ( x e. RR* /\ x =/= -oo ) ) |
| 5 | elxrge0 | |- ( x e. ( 0 [,] +oo ) <-> ( x e. RR* /\ 0 <_ x ) ) |
|
| 6 | eldifsn | |- ( x e. ( RR* \ { -oo } ) <-> ( x e. RR* /\ x =/= -oo ) ) |
|
| 7 | 4 5 6 | 3imtr4i | |- ( x e. ( 0 [,] +oo ) -> x e. ( RR* \ { -oo } ) ) |
| 8 | 7 | ssriv | |- ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) |
| 9 | 0e0iccpnf | |- 0 e. ( 0 [,] +oo ) |
|
| 10 | ge0xaddcl | |- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( x +e y ) e. ( 0 [,] +oo ) ) |
|
| 11 | 10 | rgen2 | |- A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( x +e y ) e. ( 0 [,] +oo ) |
| 12 | 1 | xrs1mnd | |- R e. Mnd |
| 13 | difss | |- ( RR* \ { -oo } ) C_ RR* |
|
| 14 | xrsbas | |- RR* = ( Base ` RR*s ) |
|
| 15 | 1 14 | ressbas2 | |- ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` R ) ) |
| 16 | 13 15 | ax-mp | |- ( RR* \ { -oo } ) = ( Base ` R ) |
| 17 | 1 | xrs10 | |- 0 = ( 0g ` R ) |
| 18 | xrex | |- RR* e. _V |
|
| 19 | 18 | difexi | |- ( RR* \ { -oo } ) e. _V |
| 20 | xrsadd | |- +e = ( +g ` RR*s ) |
|
| 21 | 1 20 | ressplusg | |- ( ( RR* \ { -oo } ) e. _V -> +e = ( +g ` R ) ) |
| 22 | 19 21 | ax-mp | |- +e = ( +g ` R ) |
| 23 | 16 17 22 | issubm | |- ( R e. Mnd -> ( ( 0 [,] +oo ) e. ( SubMnd ` R ) <-> ( ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) /\ 0 e. ( 0 [,] +oo ) /\ A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( x +e y ) e. ( 0 [,] +oo ) ) ) ) |
| 24 | 12 23 | ax-mp | |- ( ( 0 [,] +oo ) e. ( SubMnd ` R ) <-> ( ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) /\ 0 e. ( 0 [,] +oo ) /\ A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( x +e y ) e. ( 0 [,] +oo ) ) ) |
| 25 | 8 9 11 24 | mpbir3an | |- ( 0 [,] +oo ) e. ( SubMnd ` R ) |