This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrge0cmn | |- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( RR*s |`s ( RR* \ { -oo } ) ) = ( RR*s |`s ( RR* \ { -oo } ) ) |
|
| 2 | 1 | xrs1cmn | |- ( RR*s |`s ( RR* \ { -oo } ) ) e. CMnd |
| 3 | 1 | xrge0subm | |- ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) |
| 4 | xrex | |- RR* e. _V |
|
| 5 | 4 | difexi | |- ( RR* \ { -oo } ) e. _V |
| 6 | difss | |- ( RR* \ { -oo } ) C_ RR* |
|
| 7 | xrsbas | |- RR* = ( Base ` RR*s ) |
|
| 8 | 1 7 | ressbas2 | |- ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` ( RR*s |`s ( RR* \ { -oo } ) ) ) ) |
| 9 | 6 8 | ax-mp | |- ( RR* \ { -oo } ) = ( Base ` ( RR*s |`s ( RR* \ { -oo } ) ) ) |
| 10 | 9 | submss | |- ( ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) -> ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) ) |
| 11 | 3 10 | ax-mp | |- ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) |
| 12 | ressabs | |- ( ( ( RR* \ { -oo } ) e. _V /\ ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) ) -> ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) ) |
|
| 13 | 5 11 12 | mp2an | |- ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
| 14 | 13 | eqcomi | |- ( RR*s |`s ( 0 [,] +oo ) ) = ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) |
| 15 | 14 | submmnd | |- ( ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
| 16 | 3 15 | ax-mp | |- ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd |
| 17 | 14 | subcmn | |- ( ( ( RR*s |`s ( RR* \ { -oo } ) ) e. CMnd /\ ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
| 18 | 2 16 17 | mp2an | |- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |