This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the scalar multiplication function in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpssca.t | |- T = ( R Xs. S ) |
|
| xpssca.g | |- G = ( Scalar ` R ) |
||
| xpssca.1 | |- ( ph -> R e. V ) |
||
| xpssca.2 | |- ( ph -> S e. W ) |
||
| xpsvsca.x | |- X = ( Base ` R ) |
||
| xpsvsca.y | |- Y = ( Base ` S ) |
||
| xpsvsca.k | |- K = ( Base ` G ) |
||
| xpsvsca.m | |- .x. = ( .s ` R ) |
||
| xpsvsca.n | |- .X. = ( .s ` S ) |
||
| xpsvsca.p | |- .xb = ( .s ` T ) |
||
| xpsvsca.3 | |- ( ph -> A e. K ) |
||
| xpsvsca.4 | |- ( ph -> B e. X ) |
||
| xpsvsca.5 | |- ( ph -> C e. Y ) |
||
| xpsvsca.6 | |- ( ph -> ( A .x. B ) e. X ) |
||
| xpsvsca.7 | |- ( ph -> ( A .X. C ) e. Y ) |
||
| Assertion | xpsvsca | |- ( ph -> ( A .xb <. B , C >. ) = <. ( A .x. B ) , ( A .X. C ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpssca.t | |- T = ( R Xs. S ) |
|
| 2 | xpssca.g | |- G = ( Scalar ` R ) |
|
| 3 | xpssca.1 | |- ( ph -> R e. V ) |
|
| 4 | xpssca.2 | |- ( ph -> S e. W ) |
|
| 5 | xpsvsca.x | |- X = ( Base ` R ) |
|
| 6 | xpsvsca.y | |- Y = ( Base ` S ) |
|
| 7 | xpsvsca.k | |- K = ( Base ` G ) |
|
| 8 | xpsvsca.m | |- .x. = ( .s ` R ) |
|
| 9 | xpsvsca.n | |- .X. = ( .s ` S ) |
|
| 10 | xpsvsca.p | |- .xb = ( .s ` T ) |
|
| 11 | xpsvsca.3 | |- ( ph -> A e. K ) |
|
| 12 | xpsvsca.4 | |- ( ph -> B e. X ) |
|
| 13 | xpsvsca.5 | |- ( ph -> C e. Y ) |
|
| 14 | xpsvsca.6 | |- ( ph -> ( A .x. B ) e. X ) |
|
| 15 | xpsvsca.7 | |- ( ph -> ( A .X. C ) e. Y ) |
|
| 16 | df-ov | |- ( B ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) C ) = ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. B , C >. ) |
|
| 17 | eqid | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
| 18 | 17 | xpsfval | |- ( ( B e. X /\ C e. Y ) -> ( B ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) C ) = { <. (/) , B >. , <. 1o , C >. } ) |
| 19 | 12 13 18 | syl2anc | |- ( ph -> ( B ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) C ) = { <. (/) , B >. , <. 1o , C >. } ) |
| 20 | 16 19 | eqtr3id | |- ( ph -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. B , C >. ) = { <. (/) , B >. , <. 1o , C >. } ) |
| 21 | 12 13 | opelxpd | |- ( ph -> <. B , C >. e. ( X X. Y ) ) |
| 22 | 17 | xpsff1o2 | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 23 | f1of | |- ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -> ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) --> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
|
| 24 | 22 23 | ax-mp | |- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) --> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 25 | 24 | ffvelcdmi | |- ( <. B , C >. e. ( X X. Y ) -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. B , C >. ) e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 26 | 21 25 | syl | |- ( ph -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. B , C >. ) e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 27 | 20 26 | eqeltrrd | |- ( ph -> { <. (/) , B >. , <. 1o , C >. } e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 28 | eqid | |- ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
|
| 29 | 1 5 6 3 4 17 2 28 | xpsval | |- ( ph -> T = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 30 | 1 5 6 3 4 17 2 28 | xpsrnbas | |- ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 31 | f1ocnv | |- ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) |
|
| 32 | 22 31 | mp1i | |- ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) |
| 33 | f1ofo | |- ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( X X. Y ) ) |
|
| 34 | 32 33 | syl | |- ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( X X. Y ) ) |
| 35 | ovexd | |- ( ph -> ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) |
|
| 36 | 2 | fvexi | |- G e. _V |
| 37 | 36 | a1i | |- ( T. -> G e. _V ) |
| 38 | prex | |- { <. (/) , R >. , <. 1o , S >. } e. _V |
|
| 39 | 38 | a1i | |- ( T. -> { <. (/) , R >. , <. 1o , S >. } e. _V ) |
| 40 | 28 37 39 | prdssca | |- ( T. -> G = ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 41 | 40 | mptru | |- G = ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
| 42 | eqid | |- ( .s ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( .s ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
|
| 43 | 32 | f1ovscpbl | |- ( ( ph /\ ( a e. K /\ b e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ c e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) -> ( ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` b ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` c ) -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` ( a ( .s ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) b ) ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` ( a ( .s ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) c ) ) ) ) |
| 44 | 29 30 34 35 41 7 42 10 43 | imasvscaval | |- ( ( ph /\ A e. K /\ { <. (/) , B >. , <. 1o , C >. } e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) -> ( A .xb ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , B >. , <. 1o , C >. } ) ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` ( A ( .s ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , B >. , <. 1o , C >. } ) ) ) |
| 45 | 11 27 44 | mpd3an23 | |- ( ph -> ( A .xb ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , B >. , <. 1o , C >. } ) ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` ( A ( .s ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , B >. , <. 1o , C >. } ) ) ) |
| 46 | f1ocnvfv | |- ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ <. B , C >. e. ( X X. Y ) ) -> ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. B , C >. ) = { <. (/) , B >. , <. 1o , C >. } -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , B >. , <. 1o , C >. } ) = <. B , C >. ) ) |
|
| 47 | 22 21 46 | sylancr | |- ( ph -> ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. B , C >. ) = { <. (/) , B >. , <. 1o , C >. } -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , B >. , <. 1o , C >. } ) = <. B , C >. ) ) |
| 48 | 20 47 | mpd | |- ( ph -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , B >. , <. 1o , C >. } ) = <. B , C >. ) |
| 49 | 48 | oveq2d | |- ( ph -> ( A .xb ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , B >. , <. 1o , C >. } ) ) = ( A .xb <. B , C >. ) ) |
| 50 | iftrue | |- ( k = (/) -> if ( k = (/) , R , S ) = R ) |
|
| 51 | 50 | fveq2d | |- ( k = (/) -> ( .s ` if ( k = (/) , R , S ) ) = ( .s ` R ) ) |
| 52 | 51 8 | eqtr4di | |- ( k = (/) -> ( .s ` if ( k = (/) , R , S ) ) = .x. ) |
| 53 | eqidd | |- ( k = (/) -> A = A ) |
|
| 54 | iftrue | |- ( k = (/) -> if ( k = (/) , B , C ) = B ) |
|
| 55 | 52 53 54 | oveq123d | |- ( k = (/) -> ( A ( .s ` if ( k = (/) , R , S ) ) if ( k = (/) , B , C ) ) = ( A .x. B ) ) |
| 56 | iftrue | |- ( k = (/) -> if ( k = (/) , ( A .x. B ) , ( A .X. C ) ) = ( A .x. B ) ) |
|
| 57 | 55 56 | eqtr4d | |- ( k = (/) -> ( A ( .s ` if ( k = (/) , R , S ) ) if ( k = (/) , B , C ) ) = if ( k = (/) , ( A .x. B ) , ( A .X. C ) ) ) |
| 58 | iffalse | |- ( -. k = (/) -> if ( k = (/) , R , S ) = S ) |
|
| 59 | 58 | fveq2d | |- ( -. k = (/) -> ( .s ` if ( k = (/) , R , S ) ) = ( .s ` S ) ) |
| 60 | 59 9 | eqtr4di | |- ( -. k = (/) -> ( .s ` if ( k = (/) , R , S ) ) = .X. ) |
| 61 | eqidd | |- ( -. k = (/) -> A = A ) |
|
| 62 | iffalse | |- ( -. k = (/) -> if ( k = (/) , B , C ) = C ) |
|
| 63 | 60 61 62 | oveq123d | |- ( -. k = (/) -> ( A ( .s ` if ( k = (/) , R , S ) ) if ( k = (/) , B , C ) ) = ( A .X. C ) ) |
| 64 | iffalse | |- ( -. k = (/) -> if ( k = (/) , ( A .x. B ) , ( A .X. C ) ) = ( A .X. C ) ) |
|
| 65 | 63 64 | eqtr4d | |- ( -. k = (/) -> ( A ( .s ` if ( k = (/) , R , S ) ) if ( k = (/) , B , C ) ) = if ( k = (/) , ( A .x. B ) , ( A .X. C ) ) ) |
| 66 | 57 65 | pm2.61i | |- ( A ( .s ` if ( k = (/) , R , S ) ) if ( k = (/) , B , C ) ) = if ( k = (/) , ( A .x. B ) , ( A .X. C ) ) |
| 67 | 3 | adantr | |- ( ( ph /\ k e. 2o ) -> R e. V ) |
| 68 | 4 | adantr | |- ( ( ph /\ k e. 2o ) -> S e. W ) |
| 69 | simpr | |- ( ( ph /\ k e. 2o ) -> k e. 2o ) |
|
| 70 | fvprif | |- ( ( R e. V /\ S e. W /\ k e. 2o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = if ( k = (/) , R , S ) ) |
|
| 71 | 67 68 69 70 | syl3anc | |- ( ( ph /\ k e. 2o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = if ( k = (/) , R , S ) ) |
| 72 | 71 | fveq2d | |- ( ( ph /\ k e. 2o ) -> ( .s ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( .s ` if ( k = (/) , R , S ) ) ) |
| 73 | eqidd | |- ( ( ph /\ k e. 2o ) -> A = A ) |
|
| 74 | 12 | adantr | |- ( ( ph /\ k e. 2o ) -> B e. X ) |
| 75 | 13 | adantr | |- ( ( ph /\ k e. 2o ) -> C e. Y ) |
| 76 | fvprif | |- ( ( B e. X /\ C e. Y /\ k e. 2o ) -> ( { <. (/) , B >. , <. 1o , C >. } ` k ) = if ( k = (/) , B , C ) ) |
|
| 77 | 74 75 69 76 | syl3anc | |- ( ( ph /\ k e. 2o ) -> ( { <. (/) , B >. , <. 1o , C >. } ` k ) = if ( k = (/) , B , C ) ) |
| 78 | 72 73 77 | oveq123d | |- ( ( ph /\ k e. 2o ) -> ( A ( .s ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , B >. , <. 1o , C >. } ` k ) ) = ( A ( .s ` if ( k = (/) , R , S ) ) if ( k = (/) , B , C ) ) ) |
| 79 | 14 | adantr | |- ( ( ph /\ k e. 2o ) -> ( A .x. B ) e. X ) |
| 80 | 15 | adantr | |- ( ( ph /\ k e. 2o ) -> ( A .X. C ) e. Y ) |
| 81 | fvprif | |- ( ( ( A .x. B ) e. X /\ ( A .X. C ) e. Y /\ k e. 2o ) -> ( { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ` k ) = if ( k = (/) , ( A .x. B ) , ( A .X. C ) ) ) |
|
| 82 | 79 80 69 81 | syl3anc | |- ( ( ph /\ k e. 2o ) -> ( { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ` k ) = if ( k = (/) , ( A .x. B ) , ( A .X. C ) ) ) |
| 83 | 66 78 82 | 3eqtr4a | |- ( ( ph /\ k e. 2o ) -> ( A ( .s ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , B >. , <. 1o , C >. } ` k ) ) = ( { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ` k ) ) |
| 84 | 83 | mpteq2dva | |- ( ph -> ( k e. 2o |-> ( A ( .s ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , B >. , <. 1o , C >. } ` k ) ) ) = ( k e. 2o |-> ( { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ` k ) ) ) |
| 85 | eqid | |- ( Base ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Base ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
|
| 86 | 36 | a1i | |- ( ph -> G e. _V ) |
| 87 | 2on | |- 2o e. On |
|
| 88 | 87 | a1i | |- ( ph -> 2o e. On ) |
| 89 | fnpr2o | |- ( ( R e. V /\ S e. W ) -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
|
| 90 | 3 4 89 | syl2anc | |- ( ph -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
| 91 | 27 30 | eleqtrd | |- ( ph -> { <. (/) , B >. , <. 1o , C >. } e. ( Base ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 92 | 28 85 42 7 86 88 90 11 91 | prdsvscaval | |- ( ph -> ( A ( .s ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , B >. , <. 1o , C >. } ) = ( k e. 2o |-> ( A ( .s ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , B >. , <. 1o , C >. } ` k ) ) ) ) |
| 93 | fnpr2o | |- ( ( ( A .x. B ) e. X /\ ( A .X. C ) e. Y ) -> { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } Fn 2o ) |
|
| 94 | 14 15 93 | syl2anc | |- ( ph -> { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } Fn 2o ) |
| 95 | dffn5 | |- ( { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } Fn 2o <-> { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } = ( k e. 2o |-> ( { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ` k ) ) ) |
|
| 96 | 94 95 | sylib | |- ( ph -> { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } = ( k e. 2o |-> ( { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ` k ) ) ) |
| 97 | 84 92 96 | 3eqtr4d | |- ( ph -> ( A ( .s ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , B >. , <. 1o , C >. } ) = { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ) |
| 98 | 97 | fveq2d | |- ( ph -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` ( A ( .s ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , B >. , <. 1o , C >. } ) ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ) ) |
| 99 | df-ov | |- ( ( A .x. B ) ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ( A .X. C ) ) = ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. ( A .x. B ) , ( A .X. C ) >. ) |
|
| 100 | 17 | xpsfval | |- ( ( ( A .x. B ) e. X /\ ( A .X. C ) e. Y ) -> ( ( A .x. B ) ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ( A .X. C ) ) = { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ) |
| 101 | 14 15 100 | syl2anc | |- ( ph -> ( ( A .x. B ) ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ( A .X. C ) ) = { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ) |
| 102 | 99 101 | eqtr3id | |- ( ph -> ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. ( A .x. B ) , ( A .X. C ) >. ) = { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ) |
| 103 | 14 15 | opelxpd | |- ( ph -> <. ( A .x. B ) , ( A .X. C ) >. e. ( X X. Y ) ) |
| 104 | f1ocnvfv | |- ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ <. ( A .x. B ) , ( A .X. C ) >. e. ( X X. Y ) ) -> ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. ( A .x. B ) , ( A .X. C ) >. ) = { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ) = <. ( A .x. B ) , ( A .X. C ) >. ) ) |
|
| 105 | 22 103 104 | sylancr | |- ( ph -> ( ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` <. ( A .x. B ) , ( A .X. C ) >. ) = { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ) = <. ( A .x. B ) , ( A .X. C ) >. ) ) |
| 106 | 102 105 | mpd | |- ( ph -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , ( A .x. B ) >. , <. 1o , ( A .X. C ) >. } ) = <. ( A .x. B ) , ( A .X. C ) >. ) |
| 107 | 98 106 | eqtrd | |- ( ph -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` ( A ( .s ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , B >. , <. 1o , C >. } ) ) = <. ( A .x. B ) , ( A .X. C ) >. ) |
| 108 | 45 49 107 | 3eqtr3d | |- ( ph -> ( A .xb <. B , C >. ) = <. ( A .x. B ) , ( A .X. C ) >. ) |