This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication in a structure product is pointwise. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| prdsbasmpt.b | |- B = ( Base ` Y ) |
||
| prdsvscaval.t | |- .x. = ( .s ` Y ) |
||
| prdsvscaval.k | |- K = ( Base ` S ) |
||
| prdsvscaval.s | |- ( ph -> S e. V ) |
||
| prdsvscaval.i | |- ( ph -> I e. W ) |
||
| prdsvscaval.r | |- ( ph -> R Fn I ) |
||
| prdsvscaval.f | |- ( ph -> F e. K ) |
||
| prdsvscaval.g | |- ( ph -> G e. B ) |
||
| Assertion | prdsvscaval | |- ( ph -> ( F .x. G ) = ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsbasmpt.b | |- B = ( Base ` Y ) |
|
| 3 | prdsvscaval.t | |- .x. = ( .s ` Y ) |
|
| 4 | prdsvscaval.k | |- K = ( Base ` S ) |
|
| 5 | prdsvscaval.s | |- ( ph -> S e. V ) |
|
| 6 | prdsvscaval.i | |- ( ph -> I e. W ) |
|
| 7 | prdsvscaval.r | |- ( ph -> R Fn I ) |
|
| 8 | prdsvscaval.f | |- ( ph -> F e. K ) |
|
| 9 | prdsvscaval.g | |- ( ph -> G e. B ) |
|
| 10 | fnex | |- ( ( R Fn I /\ I e. W ) -> R e. _V ) |
|
| 11 | 7 6 10 | syl2anc | |- ( ph -> R e. _V ) |
| 12 | 7 | fndmd | |- ( ph -> dom R = I ) |
| 13 | 1 5 11 2 12 4 3 | prdsvsca | |- ( ph -> .x. = ( y e. K , z e. B |-> ( x e. I |-> ( y ( .s ` ( R ` x ) ) ( z ` x ) ) ) ) ) |
| 14 | id | |- ( y = F -> y = F ) |
|
| 15 | fveq1 | |- ( z = G -> ( z ` x ) = ( G ` x ) ) |
|
| 16 | 14 15 | oveqan12d | |- ( ( y = F /\ z = G ) -> ( y ( .s ` ( R ` x ) ) ( z ` x ) ) = ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) |
| 17 | 16 | adantl | |- ( ( ph /\ ( y = F /\ z = G ) ) -> ( y ( .s ` ( R ` x ) ) ( z ` x ) ) = ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) |
| 18 | 17 | mpteq2dv | |- ( ( ph /\ ( y = F /\ z = G ) ) -> ( x e. I |-> ( y ( .s ` ( R ` x ) ) ( z ` x ) ) ) = ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) ) |
| 19 | 6 | mptexd | |- ( ph -> ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) e. _V ) |
| 20 | 13 18 8 9 19 | ovmpod | |- ( ph -> ( F .x. G ) = ( x e. I |-> ( F ( .s ` ( R ` x ) ) ( G ` x ) ) ) ) |