This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the pair function at an element of 2o . (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvprif | |- ( ( A e. V /\ B e. W /\ C e. 2o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` C ) = if ( C = (/) , A , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvpr0o | |- ( A e. V -> ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) = A ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. V /\ B e. W /\ C e. 2o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) = A ) |
| 3 | 2 | adantr | |- ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = (/) ) -> ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) = A ) |
| 4 | simpr | |- ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = (/) ) -> C = (/) ) |
|
| 5 | 4 | fveq2d | |- ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = (/) ) -> ( { <. (/) , A >. , <. 1o , B >. } ` C ) = ( { <. (/) , A >. , <. 1o , B >. } ` (/) ) ) |
| 6 | 4 | iftrued | |- ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = (/) ) -> if ( C = (/) , A , B ) = A ) |
| 7 | 3 5 6 | 3eqtr4d | |- ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = (/) ) -> ( { <. (/) , A >. , <. 1o , B >. } ` C ) = if ( C = (/) , A , B ) ) |
| 8 | fvpr1o | |- ( B e. W -> ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) = B ) |
|
| 9 | 8 | 3ad2ant2 | |- ( ( A e. V /\ B e. W /\ C e. 2o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) = B ) |
| 10 | 9 | adantr | |- ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) = B ) |
| 11 | simpr | |- ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> C = 1o ) |
|
| 12 | 11 | fveq2d | |- ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` C ) = ( { <. (/) , A >. , <. 1o , B >. } ` 1o ) ) |
| 13 | 1n0 | |- 1o =/= (/) |
|
| 14 | 13 | neii | |- -. 1o = (/) |
| 15 | 11 | eqeq1d | |- ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> ( C = (/) <-> 1o = (/) ) ) |
| 16 | 14 15 | mtbiri | |- ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> -. C = (/) ) |
| 17 | 16 | iffalsed | |- ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> if ( C = (/) , A , B ) = B ) |
| 18 | 10 12 17 | 3eqtr4d | |- ( ( ( A e. V /\ B e. W /\ C e. 2o ) /\ C = 1o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` C ) = if ( C = (/) , A , B ) ) |
| 19 | elpri | |- ( C e. { (/) , 1o } -> ( C = (/) \/ C = 1o ) ) |
|
| 20 | df2o3 | |- 2o = { (/) , 1o } |
|
| 21 | 19 20 | eleq2s | |- ( C e. 2o -> ( C = (/) \/ C = 1o ) ) |
| 22 | 21 | 3ad2ant3 | |- ( ( A e. V /\ B e. W /\ C e. 2o ) -> ( C = (/) \/ C = 1o ) ) |
| 23 | 7 18 22 | mpjaodan | |- ( ( A e. V /\ B e. W /\ C e. 2o ) -> ( { <. (/) , A >. , <. 1o , B >. } ` C ) = if ( C = (/) , A , B ) ) |