This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1ocpbl.f | |- ( ph -> F : V -1-1-onto-> X ) |
|
| Assertion | f1ovscpbl | |- ( ( ph /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( F ` B ) = ( F ` C ) -> ( F ` ( A .+ B ) ) = ( F ` ( A .+ C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocpbl.f | |- ( ph -> F : V -1-1-onto-> X ) |
|
| 2 | f1of1 | |- ( F : V -1-1-onto-> X -> F : V -1-1-> X ) |
|
| 3 | 1 2 | syl | |- ( ph -> F : V -1-1-> X ) |
| 4 | 3 | adantr | |- ( ( ph /\ ( A e. K /\ B e. V /\ C e. V ) ) -> F : V -1-1-> X ) |
| 5 | simpr2 | |- ( ( ph /\ ( A e. K /\ B e. V /\ C e. V ) ) -> B e. V ) |
|
| 6 | simpr3 | |- ( ( ph /\ ( A e. K /\ B e. V /\ C e. V ) ) -> C e. V ) |
|
| 7 | f1fveq | |- ( ( F : V -1-1-> X /\ ( B e. V /\ C e. V ) ) -> ( ( F ` B ) = ( F ` C ) <-> B = C ) ) |
|
| 8 | 4 5 6 7 | syl12anc | |- ( ( ph /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( F ` B ) = ( F ` C ) <-> B = C ) ) |
| 9 | oveq2 | |- ( B = C -> ( A .+ B ) = ( A .+ C ) ) |
|
| 10 | 9 | fveq2d | |- ( B = C -> ( F ` ( A .+ B ) ) = ( F ` ( A .+ C ) ) ) |
| 11 | 8 10 | biimtrdi | |- ( ( ph /\ ( A e. K /\ B e. V /\ C e. V ) ) -> ( ( F ` B ) = ( F ` C ) -> ( F ` ( A .+ B ) ) = ( F ` ( A .+ C ) ) ) ) |