This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of lt2add . Note that ltleadd , which has weaker assumptions, is not true for the extended reals (since 0 + +oo < 1 + +oo fails). (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xlt2add | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> ( ( A < C /\ B < D ) -> ( A +e B ) < ( C +e D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xaddcl | |- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) e. RR* ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e B ) e. RR* ) |
| 3 | 2 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e B ) e. RR* ) |
| 4 | simp1l | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> A e. RR* ) |
|
| 5 | simp2r | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> D e. RR* ) |
|
| 6 | xaddcl | |- ( ( A e. RR* /\ D e. RR* ) -> ( A +e D ) e. RR* ) |
|
| 7 | 4 5 6 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e D ) e. RR* ) |
| 8 | 7 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e D ) e. RR* ) |
| 9 | xaddcl | |- ( ( C e. RR* /\ D e. RR* ) -> ( C +e D ) e. RR* ) |
|
| 10 | 9 | 3ad2ant2 | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( C +e D ) e. RR* ) |
| 11 | 10 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( C +e D ) e. RR* ) |
| 12 | simp3r | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> B < D ) |
|
| 13 | 12 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> B < D ) |
| 14 | simp1r | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> B e. RR* ) |
|
| 15 | 14 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> B e. RR* ) |
| 16 | 5 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> D e. RR* ) |
| 17 | simprl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> A e. RR ) |
|
| 18 | xltadd2 | |- ( ( B e. RR* /\ D e. RR* /\ A e. RR ) -> ( B < D <-> ( A +e B ) < ( A +e D ) ) ) |
|
| 19 | 15 16 17 18 | syl3anc | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( B < D <-> ( A +e B ) < ( A +e D ) ) ) |
| 20 | 13 19 | mpbid | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e B ) < ( A +e D ) ) |
| 21 | simp3l | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> A < C ) |
|
| 22 | 21 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> A < C ) |
| 23 | 4 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> A e. RR* ) |
| 24 | simp2l | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> C e. RR* ) |
|
| 25 | 24 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> C e. RR* ) |
| 26 | simprr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> D e. RR ) |
|
| 27 | xltadd1 | |- ( ( A e. RR* /\ C e. RR* /\ D e. RR ) -> ( A < C <-> ( A +e D ) < ( C +e D ) ) ) |
|
| 28 | 23 25 26 27 | syl3anc | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A < C <-> ( A +e D ) < ( C +e D ) ) ) |
| 29 | 22 28 | mpbid | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e D ) < ( C +e D ) ) |
| 30 | 3 8 11 20 29 | xrlttrd | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ ( A e. RR /\ D e. RR ) ) -> ( A +e B ) < ( C +e D ) ) |
| 31 | 30 | anassrs | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) /\ D e. RR ) -> ( A +e B ) < ( C +e D ) ) |
| 32 | pnfxr | |- +oo e. RR* |
|
| 33 | 32 | a1i | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> +oo e. RR* ) |
| 34 | pnfge | |- ( C e. RR* -> C <_ +oo ) |
|
| 35 | 24 34 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> C <_ +oo ) |
| 36 | 4 24 33 21 35 | xrltletrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> A < +oo ) |
| 37 | nltpnft | |- ( A e. RR* -> ( A = +oo <-> -. A < +oo ) ) |
|
| 38 | 37 | necon2abid | |- ( A e. RR* -> ( A < +oo <-> A =/= +oo ) ) |
| 39 | 4 38 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A < +oo <-> A =/= +oo ) ) |
| 40 | 36 39 | mpbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> A =/= +oo ) |
| 41 | pnfge | |- ( D e. RR* -> D <_ +oo ) |
|
| 42 | 5 41 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> D <_ +oo ) |
| 43 | 14 5 33 12 42 | xrltletrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> B < +oo ) |
| 44 | nltpnft | |- ( B e. RR* -> ( B = +oo <-> -. B < +oo ) ) |
|
| 45 | 44 | necon2abid | |- ( B e. RR* -> ( B < +oo <-> B =/= +oo ) ) |
| 46 | 14 45 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( B < +oo <-> B =/= +oo ) ) |
| 47 | 43 46 | mpbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> B =/= +oo ) |
| 48 | xaddnepnf | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo ) |
|
| 49 | 4 40 14 47 48 | syl22anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e B ) =/= +oo ) |
| 50 | nltpnft | |- ( ( A +e B ) e. RR* -> ( ( A +e B ) = +oo <-> -. ( A +e B ) < +oo ) ) |
|
| 51 | 50 | necon2abid | |- ( ( A +e B ) e. RR* -> ( ( A +e B ) < +oo <-> ( A +e B ) =/= +oo ) ) |
| 52 | 2 51 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( ( A +e B ) < +oo <-> ( A +e B ) =/= +oo ) ) |
| 53 | 49 52 | mpbird | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e B ) < +oo ) |
| 54 | 53 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ D = +oo ) -> ( A +e B ) < +oo ) |
| 55 | oveq2 | |- ( D = +oo -> ( C +e D ) = ( C +e +oo ) ) |
|
| 56 | mnfxr | |- -oo e. RR* |
|
| 57 | 56 | a1i | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo e. RR* ) |
| 58 | mnfle | |- ( A e. RR* -> -oo <_ A ) |
|
| 59 | 4 58 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo <_ A ) |
| 60 | 57 4 24 59 21 | xrlelttrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo < C ) |
| 61 | ngtmnft | |- ( C e. RR* -> ( C = -oo <-> -. -oo < C ) ) |
|
| 62 | 61 | necon2abid | |- ( C e. RR* -> ( -oo < C <-> C =/= -oo ) ) |
| 63 | 24 62 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -oo < C <-> C =/= -oo ) ) |
| 64 | 60 63 | mpbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> C =/= -oo ) |
| 65 | xaddpnf1 | |- ( ( C e. RR* /\ C =/= -oo ) -> ( C +e +oo ) = +oo ) |
|
| 66 | 24 64 65 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( C +e +oo ) = +oo ) |
| 67 | 55 66 | sylan9eqr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ D = +oo ) -> ( C +e D ) = +oo ) |
| 68 | 54 67 | breqtrrd | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ D = +oo ) -> ( A +e B ) < ( C +e D ) ) |
| 69 | 68 | adantlr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) /\ D = +oo ) -> ( A +e B ) < ( C +e D ) ) |
| 70 | mnfle | |- ( B e. RR* -> -oo <_ B ) |
|
| 71 | 14 70 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo <_ B ) |
| 72 | 57 14 5 71 12 | xrlelttrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo < D ) |
| 73 | ngtmnft | |- ( D e. RR* -> ( D = -oo <-> -. -oo < D ) ) |
|
| 74 | 73 | necon2abid | |- ( D e. RR* -> ( -oo < D <-> D =/= -oo ) ) |
| 75 | 5 74 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -oo < D <-> D =/= -oo ) ) |
| 76 | 72 75 | mpbid | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> D =/= -oo ) |
| 77 | 76 | a1d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -. ( A +e B ) < ( C +e D ) -> D =/= -oo ) ) |
| 78 | 77 | necon4bd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( D = -oo -> ( A +e B ) < ( C +e D ) ) ) |
| 79 | 78 | imp | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ D = -oo ) -> ( A +e B ) < ( C +e D ) ) |
| 80 | 79 | adantlr | |- ( ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) /\ D = -oo ) -> ( A +e B ) < ( C +e D ) ) |
| 81 | elxr | |- ( D e. RR* <-> ( D e. RR \/ D = +oo \/ D = -oo ) ) |
|
| 82 | 5 81 | sylib | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( D e. RR \/ D = +oo \/ D = -oo ) ) |
| 83 | 82 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) -> ( D e. RR \/ D = +oo \/ D = -oo ) ) |
| 84 | 31 69 80 83 | mpjao3dan | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A e. RR ) -> ( A +e B ) < ( C +e D ) ) |
| 85 | 40 | a1d | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -. ( A +e B ) < ( C +e D ) -> A =/= +oo ) ) |
| 86 | 85 | necon4bd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A = +oo -> ( A +e B ) < ( C +e D ) ) ) |
| 87 | 86 | imp | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A = +oo ) -> ( A +e B ) < ( C +e D ) ) |
| 88 | oveq1 | |- ( A = -oo -> ( A +e B ) = ( -oo +e B ) ) |
|
| 89 | xaddmnf2 | |- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo ) |
|
| 90 | 14 47 89 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -oo +e B ) = -oo ) |
| 91 | 88 90 | sylan9eqr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A = -oo ) -> ( A +e B ) = -oo ) |
| 92 | xaddnemnf | |- ( ( ( C e. RR* /\ C =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( C +e D ) =/= -oo ) |
|
| 93 | 24 64 5 76 92 | syl22anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( C +e D ) =/= -oo ) |
| 94 | ngtmnft | |- ( ( C +e D ) e. RR* -> ( ( C +e D ) = -oo <-> -. -oo < ( C +e D ) ) ) |
|
| 95 | 94 | necon2abid | |- ( ( C +e D ) e. RR* -> ( -oo < ( C +e D ) <-> ( C +e D ) =/= -oo ) ) |
| 96 | 10 95 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( -oo < ( C +e D ) <-> ( C +e D ) =/= -oo ) ) |
| 97 | 93 96 | mpbird | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> -oo < ( C +e D ) ) |
| 98 | 97 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A = -oo ) -> -oo < ( C +e D ) ) |
| 99 | 91 98 | eqbrtrd | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) /\ A = -oo ) -> ( A +e B ) < ( C +e D ) ) |
| 100 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 101 | 4 100 | sylib | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 102 | 84 87 99 101 | mpjao3dan | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) /\ ( A < C /\ B < D ) ) -> ( A +e B ) < ( C +e D ) ) |
| 103 | 102 | 3expia | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) -> ( ( A < C /\ B < D ) -> ( A +e B ) < ( C +e D ) ) ) |