This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ngtmnft | |- ( A e. RR* -> ( A = -oo <-> -. -oo < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr | |- -oo e. RR* |
|
| 2 | xrltnr | |- ( -oo e. RR* -> -. -oo < -oo ) |
|
| 3 | 1 2 | ax-mp | |- -. -oo < -oo |
| 4 | breq2 | |- ( A = -oo -> ( -oo < A <-> -oo < -oo ) ) |
|
| 5 | 3 4 | mtbiri | |- ( A = -oo -> -. -oo < A ) |
| 6 | mnfle | |- ( A e. RR* -> -oo <_ A ) |
|
| 7 | xrleloe | |- ( ( -oo e. RR* /\ A e. RR* ) -> ( -oo <_ A <-> ( -oo < A \/ -oo = A ) ) ) |
|
| 8 | 1 7 | mpan | |- ( A e. RR* -> ( -oo <_ A <-> ( -oo < A \/ -oo = A ) ) ) |
| 9 | 6 8 | mpbid | |- ( A e. RR* -> ( -oo < A \/ -oo = A ) ) |
| 10 | 9 | ord | |- ( A e. RR* -> ( -. -oo < A -> -oo = A ) ) |
| 11 | eqcom | |- ( -oo = A <-> A = -oo ) |
|
| 12 | 10 11 | imbitrdi | |- ( A e. RR* -> ( -. -oo < A -> A = -oo ) ) |
| 13 | 5 12 | impbid2 | |- ( A e. RR* -> ( A = -oo <-> -. -oo < A ) ) |