This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltleadd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ B <_ D ) -> ( A + B ) < ( C + D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltadd1 | |- ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( A < C <-> ( A + B ) < ( C + B ) ) ) |
|
| 2 | 1 | 3com23 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < C <-> ( A + B ) < ( C + B ) ) ) |
| 3 | 2 | 3expa | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( A < C <-> ( A + B ) < ( C + B ) ) ) |
| 4 | 3 | adantrr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A < C <-> ( A + B ) < ( C + B ) ) ) |
| 5 | leadd2 | |- ( ( B e. RR /\ D e. RR /\ C e. RR ) -> ( B <_ D <-> ( C + B ) <_ ( C + D ) ) ) |
|
| 6 | 5 | 3com23 | |- ( ( B e. RR /\ C e. RR /\ D e. RR ) -> ( B <_ D <-> ( C + B ) <_ ( C + D ) ) ) |
| 7 | 6 | 3expb | |- ( ( B e. RR /\ ( C e. RR /\ D e. RR ) ) -> ( B <_ D <-> ( C + B ) <_ ( C + D ) ) ) |
| 8 | 7 | adantll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B <_ D <-> ( C + B ) <_ ( C + D ) ) ) |
| 9 | 4 8 | anbi12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ B <_ D ) <-> ( ( A + B ) < ( C + B ) /\ ( C + B ) <_ ( C + D ) ) ) ) |
| 10 | readdcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
|
| 11 | 10 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A + B ) e. RR ) |
| 12 | readdcl | |- ( ( C e. RR /\ B e. RR ) -> ( C + B ) e. RR ) |
|
| 13 | 12 | ancoms | |- ( ( B e. RR /\ C e. RR ) -> ( C + B ) e. RR ) |
| 14 | 13 | ad2ant2lr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C + B ) e. RR ) |
| 15 | readdcl | |- ( ( C e. RR /\ D e. RR ) -> ( C + D ) e. RR ) |
|
| 16 | 15 | adantl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C + D ) e. RR ) |
| 17 | ltletr | |- ( ( ( A + B ) e. RR /\ ( C + B ) e. RR /\ ( C + D ) e. RR ) -> ( ( ( A + B ) < ( C + B ) /\ ( C + B ) <_ ( C + D ) ) -> ( A + B ) < ( C + D ) ) ) |
|
| 18 | 11 14 16 17 | syl3anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A + B ) < ( C + B ) /\ ( C + B ) <_ ( C + D ) ) -> ( A + B ) < ( C + D ) ) ) |
| 19 | 9 18 | sylbid | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ B <_ D ) -> ( A + B ) < ( C + D ) ) ) |