This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of extended real addition in the subset RR* / { +oo } . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddnepnf | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnepnf | |- ( ( A e. RR* /\ A =/= +oo ) <-> ( A e. RR \/ A = -oo ) ) |
|
| 2 | xrnepnf | |- ( ( B e. RR* /\ B =/= +oo ) <-> ( B e. RR \/ B = -oo ) ) |
|
| 3 | rexadd | |- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
|
| 4 | readdcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
|
| 5 | 3 4 | eqeltrd | |- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) e. RR ) |
| 6 | 5 | renepnfd | |- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) =/= +oo ) |
| 7 | oveq2 | |- ( B = -oo -> ( A +e B ) = ( A +e -oo ) ) |
|
| 8 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 9 | renepnf | |- ( A e. RR -> A =/= +oo ) |
|
| 10 | xaddmnf1 | |- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
|
| 11 | 8 9 10 | syl2anc | |- ( A e. RR -> ( A +e -oo ) = -oo ) |
| 12 | 7 11 | sylan9eqr | |- ( ( A e. RR /\ B = -oo ) -> ( A +e B ) = -oo ) |
| 13 | mnfnepnf | |- -oo =/= +oo |
|
| 14 | 13 | a1i | |- ( ( A e. RR /\ B = -oo ) -> -oo =/= +oo ) |
| 15 | 12 14 | eqnetrd | |- ( ( A e. RR /\ B = -oo ) -> ( A +e B ) =/= +oo ) |
| 16 | 6 15 | jaodan | |- ( ( A e. RR /\ ( B e. RR \/ B = -oo ) ) -> ( A +e B ) =/= +oo ) |
| 17 | 2 16 | sylan2b | |- ( ( A e. RR /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo ) |
| 18 | oveq1 | |- ( A = -oo -> ( A +e B ) = ( -oo +e B ) ) |
|
| 19 | xaddmnf2 | |- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo ) |
|
| 20 | 18 19 | sylan9eq | |- ( ( A = -oo /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) = -oo ) |
| 21 | 13 | a1i | |- ( ( A = -oo /\ ( B e. RR* /\ B =/= +oo ) ) -> -oo =/= +oo ) |
| 22 | 20 21 | eqnetrd | |- ( ( A = -oo /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo ) |
| 23 | 17 22 | jaoian | |- ( ( ( A e. RR \/ A = -oo ) /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo ) |
| 24 | 1 23 | sylanb | |- ( ( ( A e. RR* /\ A =/= +oo ) /\ ( B e. RR* /\ B =/= +oo ) ) -> ( A +e B ) =/= +oo ) |