This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of ltadd2 . (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xltadd2 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( A < B <-> ( C +e A ) < ( C +e B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xltadd1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( A < B <-> ( A +e C ) < ( B +e C ) ) ) |
|
| 2 | rexr | |- ( C e. RR -> C e. RR* ) |
|
| 3 | xaddcom | |- ( ( A e. RR* /\ C e. RR* ) -> ( A +e C ) = ( C +e A ) ) |
|
| 4 | 3 | 3adant2 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A +e C ) = ( C +e A ) ) |
| 5 | xaddcom | |- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) = ( C +e B ) ) |
|
| 6 | 5 | 3adant1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B +e C ) = ( C +e B ) ) |
| 7 | 4 6 | breq12d | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A +e C ) < ( B +e C ) <-> ( C +e A ) < ( C +e B ) ) ) |
| 8 | 2 7 | syl3an3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( ( A +e C ) < ( B +e C ) <-> ( C +e A ) < ( C +e B ) ) ) |
| 9 | 1 8 | bitrd | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( A < B <-> ( C +e A ) < ( C +e B ) ) ) |