This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of subge0 . (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xsubge0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
|
| 2 | 0xr | |- 0 e. RR* |
|
| 3 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 4 | xnegcl | |- ( B e. RR* -> -e B e. RR* ) |
|
| 5 | xaddcl | |- ( ( A e. RR* /\ -e B e. RR* ) -> ( A +e -e B ) e. RR* ) |
|
| 6 | 4 5 | sylan2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A +e -e B ) e. RR* ) |
| 7 | 3 6 | sylan2 | |- ( ( A e. RR* /\ B e. RR ) -> ( A +e -e B ) e. RR* ) |
| 8 | simpr | |- ( ( A e. RR* /\ B e. RR ) -> B e. RR ) |
|
| 9 | xleadd1 | |- ( ( 0 e. RR* /\ ( A +e -e B ) e. RR* /\ B e. RR ) -> ( 0 <_ ( A +e -e B ) <-> ( 0 +e B ) <_ ( ( A +e -e B ) +e B ) ) ) |
|
| 10 | 2 7 8 9 | mp3an2i | |- ( ( A e. RR* /\ B e. RR ) -> ( 0 <_ ( A +e -e B ) <-> ( 0 +e B ) <_ ( ( A +e -e B ) +e B ) ) ) |
| 11 | 3 | adantl | |- ( ( A e. RR* /\ B e. RR ) -> B e. RR* ) |
| 12 | xaddlid | |- ( B e. RR* -> ( 0 +e B ) = B ) |
|
| 13 | 11 12 | syl | |- ( ( A e. RR* /\ B e. RR ) -> ( 0 +e B ) = B ) |
| 14 | xnpcan | |- ( ( A e. RR* /\ B e. RR ) -> ( ( A +e -e B ) +e B ) = A ) |
|
| 15 | 13 14 | breq12d | |- ( ( A e. RR* /\ B e. RR ) -> ( ( 0 +e B ) <_ ( ( A +e -e B ) +e B ) <-> B <_ A ) ) |
| 16 | 10 15 | bitrd | |- ( ( A e. RR* /\ B e. RR ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |
| 17 | pnfxr | |- +oo e. RR* |
|
| 18 | xrletri3 | |- ( ( A e. RR* /\ +oo e. RR* ) -> ( A = +oo <-> ( A <_ +oo /\ +oo <_ A ) ) ) |
|
| 19 | 17 18 | mpan2 | |- ( A e. RR* -> ( A = +oo <-> ( A <_ +oo /\ +oo <_ A ) ) ) |
| 20 | mnflt0 | |- -oo < 0 |
|
| 21 | mnfxr | |- -oo e. RR* |
|
| 22 | xrltnle | |- ( ( -oo e. RR* /\ 0 e. RR* ) -> ( -oo < 0 <-> -. 0 <_ -oo ) ) |
|
| 23 | 21 2 22 | mp2an | |- ( -oo < 0 <-> -. 0 <_ -oo ) |
| 24 | 20 23 | mpbi | |- -. 0 <_ -oo |
| 25 | xaddmnf1 | |- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
|
| 26 | 25 | breq2d | |- ( ( A e. RR* /\ A =/= +oo ) -> ( 0 <_ ( A +e -oo ) <-> 0 <_ -oo ) ) |
| 27 | 24 26 | mtbiri | |- ( ( A e. RR* /\ A =/= +oo ) -> -. 0 <_ ( A +e -oo ) ) |
| 28 | 27 | ex | |- ( A e. RR* -> ( A =/= +oo -> -. 0 <_ ( A +e -oo ) ) ) |
| 29 | 28 | necon4ad | |- ( A e. RR* -> ( 0 <_ ( A +e -oo ) -> A = +oo ) ) |
| 30 | 0le0 | |- 0 <_ 0 |
|
| 31 | oveq1 | |- ( A = +oo -> ( A +e -oo ) = ( +oo +e -oo ) ) |
|
| 32 | pnfaddmnf | |- ( +oo +e -oo ) = 0 |
|
| 33 | 31 32 | eqtrdi | |- ( A = +oo -> ( A +e -oo ) = 0 ) |
| 34 | 30 33 | breqtrrid | |- ( A = +oo -> 0 <_ ( A +e -oo ) ) |
| 35 | 29 34 | impbid1 | |- ( A e. RR* -> ( 0 <_ ( A +e -oo ) <-> A = +oo ) ) |
| 36 | pnfge | |- ( A e. RR* -> A <_ +oo ) |
|
| 37 | 36 | biantrurd | |- ( A e. RR* -> ( +oo <_ A <-> ( A <_ +oo /\ +oo <_ A ) ) ) |
| 38 | 19 35 37 | 3bitr4d | |- ( A e. RR* -> ( 0 <_ ( A +e -oo ) <-> +oo <_ A ) ) |
| 39 | 38 | adantr | |- ( ( A e. RR* /\ B = +oo ) -> ( 0 <_ ( A +e -oo ) <-> +oo <_ A ) ) |
| 40 | xnegeq | |- ( B = +oo -> -e B = -e +oo ) |
|
| 41 | xnegpnf | |- -e +oo = -oo |
|
| 42 | 40 41 | eqtrdi | |- ( B = +oo -> -e B = -oo ) |
| 43 | 42 | adantl | |- ( ( A e. RR* /\ B = +oo ) -> -e B = -oo ) |
| 44 | 43 | oveq2d | |- ( ( A e. RR* /\ B = +oo ) -> ( A +e -e B ) = ( A +e -oo ) ) |
| 45 | 44 | breq2d | |- ( ( A e. RR* /\ B = +oo ) -> ( 0 <_ ( A +e -e B ) <-> 0 <_ ( A +e -oo ) ) ) |
| 46 | breq1 | |- ( B = +oo -> ( B <_ A <-> +oo <_ A ) ) |
|
| 47 | 46 | adantl | |- ( ( A e. RR* /\ B = +oo ) -> ( B <_ A <-> +oo <_ A ) ) |
| 48 | 39 45 47 | 3bitr4d | |- ( ( A e. RR* /\ B = +oo ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |
| 49 | oveq1 | |- ( A = -oo -> ( A +e +oo ) = ( -oo +e +oo ) ) |
|
| 50 | mnfaddpnf | |- ( -oo +e +oo ) = 0 |
|
| 51 | 49 50 | eqtrdi | |- ( A = -oo -> ( A +e +oo ) = 0 ) |
| 52 | 51 | adantl | |- ( ( A e. RR* /\ A = -oo ) -> ( A +e +oo ) = 0 ) |
| 53 | 30 52 | breqtrrid | |- ( ( A e. RR* /\ A = -oo ) -> 0 <_ ( A +e +oo ) ) |
| 54 | 0lepnf | |- 0 <_ +oo |
|
| 55 | xaddpnf1 | |- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |
|
| 56 | 54 55 | breqtrrid | |- ( ( A e. RR* /\ A =/= -oo ) -> 0 <_ ( A +e +oo ) ) |
| 57 | 53 56 | pm2.61dane | |- ( A e. RR* -> 0 <_ ( A +e +oo ) ) |
| 58 | mnfle | |- ( A e. RR* -> -oo <_ A ) |
|
| 59 | 57 58 | 2thd | |- ( A e. RR* -> ( 0 <_ ( A +e +oo ) <-> -oo <_ A ) ) |
| 60 | 59 | adantr | |- ( ( A e. RR* /\ B = -oo ) -> ( 0 <_ ( A +e +oo ) <-> -oo <_ A ) ) |
| 61 | xnegeq | |- ( B = -oo -> -e B = -e -oo ) |
|
| 62 | xnegmnf | |- -e -oo = +oo |
|
| 63 | 61 62 | eqtrdi | |- ( B = -oo -> -e B = +oo ) |
| 64 | 63 | adantl | |- ( ( A e. RR* /\ B = -oo ) -> -e B = +oo ) |
| 65 | 64 | oveq2d | |- ( ( A e. RR* /\ B = -oo ) -> ( A +e -e B ) = ( A +e +oo ) ) |
| 66 | 65 | breq2d | |- ( ( A e. RR* /\ B = -oo ) -> ( 0 <_ ( A +e -e B ) <-> 0 <_ ( A +e +oo ) ) ) |
| 67 | breq1 | |- ( B = -oo -> ( B <_ A <-> -oo <_ A ) ) |
|
| 68 | 67 | adantl | |- ( ( A e. RR* /\ B = -oo ) -> ( B <_ A <-> -oo <_ A ) ) |
| 69 | 60 66 68 | 3bitr4d | |- ( ( A e. RR* /\ B = -oo ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |
| 70 | 16 48 69 | 3jaodan | |- ( ( A e. RR* /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |
| 71 | 1 70 | sylan2b | |- ( ( A e. RR* /\ B e. RR* ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |