This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of ltadd1 . (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xltadd1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( A < B <-> ( A +e C ) < ( B +e C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xleadd1 | |- ( ( B e. RR* /\ A e. RR* /\ C e. RR ) -> ( B <_ A <-> ( B +e C ) <_ ( A +e C ) ) ) |
|
| 2 | 1 | 3com12 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( B <_ A <-> ( B +e C ) <_ ( A +e C ) ) ) |
| 3 | 2 | notbid | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( -. B <_ A <-> -. ( B +e C ) <_ ( A +e C ) ) ) |
| 4 | xrltnle | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. B <_ A ) ) |
|
| 5 | 4 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( A < B <-> -. B <_ A ) ) |
| 6 | simp1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> A e. RR* ) |
|
| 7 | rexr | |- ( C e. RR -> C e. RR* ) |
|
| 8 | 7 | 3ad2ant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> C e. RR* ) |
| 9 | xaddcl | |- ( ( A e. RR* /\ C e. RR* ) -> ( A +e C ) e. RR* ) |
|
| 10 | 6 8 9 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( A +e C ) e. RR* ) |
| 11 | simp2 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> B e. RR* ) |
|
| 12 | xaddcl | |- ( ( B e. RR* /\ C e. RR* ) -> ( B +e C ) e. RR* ) |
|
| 13 | 11 8 12 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( B +e C ) e. RR* ) |
| 14 | xrltnle | |- ( ( ( A +e C ) e. RR* /\ ( B +e C ) e. RR* ) -> ( ( A +e C ) < ( B +e C ) <-> -. ( B +e C ) <_ ( A +e C ) ) ) |
|
| 15 | 10 13 14 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( ( A +e C ) < ( B +e C ) <-> -. ( B +e C ) <_ ( A +e C ) ) ) |
| 16 | 3 5 15 | 3bitr4d | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR ) -> ( A < B <-> ( A +e C ) < ( B +e C ) ) ) |