This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex in the union of two graphs on the same vertex set is the sum of the degrees of the vertex in each graph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 21-Dec-2017) (Revised by AV, 19-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdun.i | |- I = ( iEdg ` G ) |
|
| vtxdun.j | |- J = ( iEdg ` H ) |
||
| vtxdun.vg | |- V = ( Vtx ` G ) |
||
| vtxdun.vh | |- ( ph -> ( Vtx ` H ) = V ) |
||
| vtxdun.vu | |- ( ph -> ( Vtx ` U ) = V ) |
||
| vtxdun.d | |- ( ph -> ( dom I i^i dom J ) = (/) ) |
||
| vtxdun.fi | |- ( ph -> Fun I ) |
||
| vtxdun.fj | |- ( ph -> Fun J ) |
||
| vtxdun.n | |- ( ph -> N e. V ) |
||
| vtxdun.u | |- ( ph -> ( iEdg ` U ) = ( I u. J ) ) |
||
| Assertion | vtxdun | |- ( ph -> ( ( VtxDeg ` U ) ` N ) = ( ( ( VtxDeg ` G ) ` N ) +e ( ( VtxDeg ` H ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdun.i | |- I = ( iEdg ` G ) |
|
| 2 | vtxdun.j | |- J = ( iEdg ` H ) |
|
| 3 | vtxdun.vg | |- V = ( Vtx ` G ) |
|
| 4 | vtxdun.vh | |- ( ph -> ( Vtx ` H ) = V ) |
|
| 5 | vtxdun.vu | |- ( ph -> ( Vtx ` U ) = V ) |
|
| 6 | vtxdun.d | |- ( ph -> ( dom I i^i dom J ) = (/) ) |
|
| 7 | vtxdun.fi | |- ( ph -> Fun I ) |
|
| 8 | vtxdun.fj | |- ( ph -> Fun J ) |
|
| 9 | vtxdun.n | |- ( ph -> N e. V ) |
|
| 10 | vtxdun.u | |- ( ph -> ( iEdg ` U ) = ( I u. J ) ) |
|
| 11 | df-rab | |- { x e. dom ( iEdg ` U ) | N e. ( ( iEdg ` U ) ` x ) } = { x | ( x e. dom ( iEdg ` U ) /\ N e. ( ( iEdg ` U ) ` x ) ) } |
|
| 12 | 10 | dmeqd | |- ( ph -> dom ( iEdg ` U ) = dom ( I u. J ) ) |
| 13 | dmun | |- dom ( I u. J ) = ( dom I u. dom J ) |
|
| 14 | 12 13 | eqtrdi | |- ( ph -> dom ( iEdg ` U ) = ( dom I u. dom J ) ) |
| 15 | 14 | eleq2d | |- ( ph -> ( x e. dom ( iEdg ` U ) <-> x e. ( dom I u. dom J ) ) ) |
| 16 | elun | |- ( x e. ( dom I u. dom J ) <-> ( x e. dom I \/ x e. dom J ) ) |
|
| 17 | 15 16 | bitrdi | |- ( ph -> ( x e. dom ( iEdg ` U ) <-> ( x e. dom I \/ x e. dom J ) ) ) |
| 18 | 17 | anbi1d | |- ( ph -> ( ( x e. dom ( iEdg ` U ) /\ N e. ( ( iEdg ` U ) ` x ) ) <-> ( ( x e. dom I \/ x e. dom J ) /\ N e. ( ( iEdg ` U ) ` x ) ) ) ) |
| 19 | andir | |- ( ( ( x e. dom I \/ x e. dom J ) /\ N e. ( ( iEdg ` U ) ` x ) ) <-> ( ( x e. dom I /\ N e. ( ( iEdg ` U ) ` x ) ) \/ ( x e. dom J /\ N e. ( ( iEdg ` U ) ` x ) ) ) ) |
|
| 20 | 18 19 | bitrdi | |- ( ph -> ( ( x e. dom ( iEdg ` U ) /\ N e. ( ( iEdg ` U ) ` x ) ) <-> ( ( x e. dom I /\ N e. ( ( iEdg ` U ) ` x ) ) \/ ( x e. dom J /\ N e. ( ( iEdg ` U ) ` x ) ) ) ) ) |
| 21 | 20 | abbidv | |- ( ph -> { x | ( x e. dom ( iEdg ` U ) /\ N e. ( ( iEdg ` U ) ` x ) ) } = { x | ( ( x e. dom I /\ N e. ( ( iEdg ` U ) ` x ) ) \/ ( x e. dom J /\ N e. ( ( iEdg ` U ) ` x ) ) ) } ) |
| 22 | 11 21 | eqtrid | |- ( ph -> { x e. dom ( iEdg ` U ) | N e. ( ( iEdg ` U ) ` x ) } = { x | ( ( x e. dom I /\ N e. ( ( iEdg ` U ) ` x ) ) \/ ( x e. dom J /\ N e. ( ( iEdg ` U ) ` x ) ) ) } ) |
| 23 | unab | |- ( { x | ( x e. dom I /\ N e. ( ( iEdg ` U ) ` x ) ) } u. { x | ( x e. dom J /\ N e. ( ( iEdg ` U ) ` x ) ) } ) = { x | ( ( x e. dom I /\ N e. ( ( iEdg ` U ) ` x ) ) \/ ( x e. dom J /\ N e. ( ( iEdg ` U ) ` x ) ) ) } |
|
| 24 | 23 | eqcomi | |- { x | ( ( x e. dom I /\ N e. ( ( iEdg ` U ) ` x ) ) \/ ( x e. dom J /\ N e. ( ( iEdg ` U ) ` x ) ) ) } = ( { x | ( x e. dom I /\ N e. ( ( iEdg ` U ) ` x ) ) } u. { x | ( x e. dom J /\ N e. ( ( iEdg ` U ) ` x ) ) } ) |
| 25 | 24 | a1i | |- ( ph -> { x | ( ( x e. dom I /\ N e. ( ( iEdg ` U ) ` x ) ) \/ ( x e. dom J /\ N e. ( ( iEdg ` U ) ` x ) ) ) } = ( { x | ( x e. dom I /\ N e. ( ( iEdg ` U ) ` x ) ) } u. { x | ( x e. dom J /\ N e. ( ( iEdg ` U ) ` x ) ) } ) ) |
| 26 | df-rab | |- { x e. dom I | N e. ( ( iEdg ` U ) ` x ) } = { x | ( x e. dom I /\ N e. ( ( iEdg ` U ) ` x ) ) } |
|
| 27 | 10 | fveq1d | |- ( ph -> ( ( iEdg ` U ) ` x ) = ( ( I u. J ) ` x ) ) |
| 28 | 27 | adantr | |- ( ( ph /\ x e. dom I ) -> ( ( iEdg ` U ) ` x ) = ( ( I u. J ) ` x ) ) |
| 29 | 7 | funfnd | |- ( ph -> I Fn dom I ) |
| 30 | 29 | adantr | |- ( ( ph /\ x e. dom I ) -> I Fn dom I ) |
| 31 | 8 | funfnd | |- ( ph -> J Fn dom J ) |
| 32 | 31 | adantr | |- ( ( ph /\ x e. dom I ) -> J Fn dom J ) |
| 33 | 6 | anim1i | |- ( ( ph /\ x e. dom I ) -> ( ( dom I i^i dom J ) = (/) /\ x e. dom I ) ) |
| 34 | fvun1 | |- ( ( I Fn dom I /\ J Fn dom J /\ ( ( dom I i^i dom J ) = (/) /\ x e. dom I ) ) -> ( ( I u. J ) ` x ) = ( I ` x ) ) |
|
| 35 | 30 32 33 34 | syl3anc | |- ( ( ph /\ x e. dom I ) -> ( ( I u. J ) ` x ) = ( I ` x ) ) |
| 36 | 28 35 | eqtrd | |- ( ( ph /\ x e. dom I ) -> ( ( iEdg ` U ) ` x ) = ( I ` x ) ) |
| 37 | 36 | eleq2d | |- ( ( ph /\ x e. dom I ) -> ( N e. ( ( iEdg ` U ) ` x ) <-> N e. ( I ` x ) ) ) |
| 38 | 37 | rabbidva | |- ( ph -> { x e. dom I | N e. ( ( iEdg ` U ) ` x ) } = { x e. dom I | N e. ( I ` x ) } ) |
| 39 | 26 38 | eqtr3id | |- ( ph -> { x | ( x e. dom I /\ N e. ( ( iEdg ` U ) ` x ) ) } = { x e. dom I | N e. ( I ` x ) } ) |
| 40 | df-rab | |- { x e. dom J | N e. ( ( iEdg ` U ) ` x ) } = { x | ( x e. dom J /\ N e. ( ( iEdg ` U ) ` x ) ) } |
|
| 41 | 27 | adantr | |- ( ( ph /\ x e. dom J ) -> ( ( iEdg ` U ) ` x ) = ( ( I u. J ) ` x ) ) |
| 42 | 29 | adantr | |- ( ( ph /\ x e. dom J ) -> I Fn dom I ) |
| 43 | 31 | adantr | |- ( ( ph /\ x e. dom J ) -> J Fn dom J ) |
| 44 | 6 | anim1i | |- ( ( ph /\ x e. dom J ) -> ( ( dom I i^i dom J ) = (/) /\ x e. dom J ) ) |
| 45 | fvun2 | |- ( ( I Fn dom I /\ J Fn dom J /\ ( ( dom I i^i dom J ) = (/) /\ x e. dom J ) ) -> ( ( I u. J ) ` x ) = ( J ` x ) ) |
|
| 46 | 42 43 44 45 | syl3anc | |- ( ( ph /\ x e. dom J ) -> ( ( I u. J ) ` x ) = ( J ` x ) ) |
| 47 | 41 46 | eqtrd | |- ( ( ph /\ x e. dom J ) -> ( ( iEdg ` U ) ` x ) = ( J ` x ) ) |
| 48 | 47 | eleq2d | |- ( ( ph /\ x e. dom J ) -> ( N e. ( ( iEdg ` U ) ` x ) <-> N e. ( J ` x ) ) ) |
| 49 | 48 | rabbidva | |- ( ph -> { x e. dom J | N e. ( ( iEdg ` U ) ` x ) } = { x e. dom J | N e. ( J ` x ) } ) |
| 50 | 40 49 | eqtr3id | |- ( ph -> { x | ( x e. dom J /\ N e. ( ( iEdg ` U ) ` x ) ) } = { x e. dom J | N e. ( J ` x ) } ) |
| 51 | 39 50 | uneq12d | |- ( ph -> ( { x | ( x e. dom I /\ N e. ( ( iEdg ` U ) ` x ) ) } u. { x | ( x e. dom J /\ N e. ( ( iEdg ` U ) ` x ) ) } ) = ( { x e. dom I | N e. ( I ` x ) } u. { x e. dom J | N e. ( J ` x ) } ) ) |
| 52 | 22 25 51 | 3eqtrd | |- ( ph -> { x e. dom ( iEdg ` U ) | N e. ( ( iEdg ` U ) ` x ) } = ( { x e. dom I | N e. ( I ` x ) } u. { x e. dom J | N e. ( J ` x ) } ) ) |
| 53 | 52 | fveq2d | |- ( ph -> ( # ` { x e. dom ( iEdg ` U ) | N e. ( ( iEdg ` U ) ` x ) } ) = ( # ` ( { x e. dom I | N e. ( I ` x ) } u. { x e. dom J | N e. ( J ` x ) } ) ) ) |
| 54 | 1 | fvexi | |- I e. _V |
| 55 | 54 | dmex | |- dom I e. _V |
| 56 | 55 | rabex | |- { x e. dom I | N e. ( I ` x ) } e. _V |
| 57 | 56 | a1i | |- ( ph -> { x e. dom I | N e. ( I ` x ) } e. _V ) |
| 58 | 2 | fvexi | |- J e. _V |
| 59 | 58 | dmex | |- dom J e. _V |
| 60 | 59 | rabex | |- { x e. dom J | N e. ( J ` x ) } e. _V |
| 61 | 60 | a1i | |- ( ph -> { x e. dom J | N e. ( J ` x ) } e. _V ) |
| 62 | ssrab2 | |- { x e. dom I | N e. ( I ` x ) } C_ dom I |
|
| 63 | ssrab2 | |- { x e. dom J | N e. ( J ` x ) } C_ dom J |
|
| 64 | ss2in | |- ( ( { x e. dom I | N e. ( I ` x ) } C_ dom I /\ { x e. dom J | N e. ( J ` x ) } C_ dom J ) -> ( { x e. dom I | N e. ( I ` x ) } i^i { x e. dom J | N e. ( J ` x ) } ) C_ ( dom I i^i dom J ) ) |
|
| 65 | 62 63 64 | mp2an | |- ( { x e. dom I | N e. ( I ` x ) } i^i { x e. dom J | N e. ( J ` x ) } ) C_ ( dom I i^i dom J ) |
| 66 | 65 6 | sseqtrid | |- ( ph -> ( { x e. dom I | N e. ( I ` x ) } i^i { x e. dom J | N e. ( J ` x ) } ) C_ (/) ) |
| 67 | ss0 | |- ( ( { x e. dom I | N e. ( I ` x ) } i^i { x e. dom J | N e. ( J ` x ) } ) C_ (/) -> ( { x e. dom I | N e. ( I ` x ) } i^i { x e. dom J | N e. ( J ` x ) } ) = (/) ) |
|
| 68 | 66 67 | syl | |- ( ph -> ( { x e. dom I | N e. ( I ` x ) } i^i { x e. dom J | N e. ( J ` x ) } ) = (/) ) |
| 69 | hashunx | |- ( ( { x e. dom I | N e. ( I ` x ) } e. _V /\ { x e. dom J | N e. ( J ` x ) } e. _V /\ ( { x e. dom I | N e. ( I ` x ) } i^i { x e. dom J | N e. ( J ` x ) } ) = (/) ) -> ( # ` ( { x e. dom I | N e. ( I ` x ) } u. { x e. dom J | N e. ( J ` x ) } ) ) = ( ( # ` { x e. dom I | N e. ( I ` x ) } ) +e ( # ` { x e. dom J | N e. ( J ` x ) } ) ) ) |
|
| 70 | 57 61 68 69 | syl3anc | |- ( ph -> ( # ` ( { x e. dom I | N e. ( I ` x ) } u. { x e. dom J | N e. ( J ` x ) } ) ) = ( ( # ` { x e. dom I | N e. ( I ` x ) } ) +e ( # ` { x e. dom J | N e. ( J ` x ) } ) ) ) |
| 71 | 53 70 | eqtrd | |- ( ph -> ( # ` { x e. dom ( iEdg ` U ) | N e. ( ( iEdg ` U ) ` x ) } ) = ( ( # ` { x e. dom I | N e. ( I ` x ) } ) +e ( # ` { x e. dom J | N e. ( J ` x ) } ) ) ) |
| 72 | df-rab | |- { x e. dom ( iEdg ` U ) | ( ( iEdg ` U ) ` x ) = { N } } = { x | ( x e. dom ( iEdg ` U ) /\ ( ( iEdg ` U ) ` x ) = { N } ) } |
|
| 73 | 17 | anbi1d | |- ( ph -> ( ( x e. dom ( iEdg ` U ) /\ ( ( iEdg ` U ) ` x ) = { N } ) <-> ( ( x e. dom I \/ x e. dom J ) /\ ( ( iEdg ` U ) ` x ) = { N } ) ) ) |
| 74 | andir | |- ( ( ( x e. dom I \/ x e. dom J ) /\ ( ( iEdg ` U ) ` x ) = { N } ) <-> ( ( x e. dom I /\ ( ( iEdg ` U ) ` x ) = { N } ) \/ ( x e. dom J /\ ( ( iEdg ` U ) ` x ) = { N } ) ) ) |
|
| 75 | 73 74 | bitrdi | |- ( ph -> ( ( x e. dom ( iEdg ` U ) /\ ( ( iEdg ` U ) ` x ) = { N } ) <-> ( ( x e. dom I /\ ( ( iEdg ` U ) ` x ) = { N } ) \/ ( x e. dom J /\ ( ( iEdg ` U ) ` x ) = { N } ) ) ) ) |
| 76 | 75 | abbidv | |- ( ph -> { x | ( x e. dom ( iEdg ` U ) /\ ( ( iEdg ` U ) ` x ) = { N } ) } = { x | ( ( x e. dom I /\ ( ( iEdg ` U ) ` x ) = { N } ) \/ ( x e. dom J /\ ( ( iEdg ` U ) ` x ) = { N } ) ) } ) |
| 77 | 72 76 | eqtrid | |- ( ph -> { x e. dom ( iEdg ` U ) | ( ( iEdg ` U ) ` x ) = { N } } = { x | ( ( x e. dom I /\ ( ( iEdg ` U ) ` x ) = { N } ) \/ ( x e. dom J /\ ( ( iEdg ` U ) ` x ) = { N } ) ) } ) |
| 78 | unab | |- ( { x | ( x e. dom I /\ ( ( iEdg ` U ) ` x ) = { N } ) } u. { x | ( x e. dom J /\ ( ( iEdg ` U ) ` x ) = { N } ) } ) = { x | ( ( x e. dom I /\ ( ( iEdg ` U ) ` x ) = { N } ) \/ ( x e. dom J /\ ( ( iEdg ` U ) ` x ) = { N } ) ) } |
|
| 79 | 78 | eqcomi | |- { x | ( ( x e. dom I /\ ( ( iEdg ` U ) ` x ) = { N } ) \/ ( x e. dom J /\ ( ( iEdg ` U ) ` x ) = { N } ) ) } = ( { x | ( x e. dom I /\ ( ( iEdg ` U ) ` x ) = { N } ) } u. { x | ( x e. dom J /\ ( ( iEdg ` U ) ` x ) = { N } ) } ) |
| 80 | 79 | a1i | |- ( ph -> { x | ( ( x e. dom I /\ ( ( iEdg ` U ) ` x ) = { N } ) \/ ( x e. dom J /\ ( ( iEdg ` U ) ` x ) = { N } ) ) } = ( { x | ( x e. dom I /\ ( ( iEdg ` U ) ` x ) = { N } ) } u. { x | ( x e. dom J /\ ( ( iEdg ` U ) ` x ) = { N } ) } ) ) |
| 81 | df-rab | |- { x e. dom I | ( ( iEdg ` U ) ` x ) = { N } } = { x | ( x e. dom I /\ ( ( iEdg ` U ) ` x ) = { N } ) } |
|
| 82 | 36 | eqeq1d | |- ( ( ph /\ x e. dom I ) -> ( ( ( iEdg ` U ) ` x ) = { N } <-> ( I ` x ) = { N } ) ) |
| 83 | 82 | rabbidva | |- ( ph -> { x e. dom I | ( ( iEdg ` U ) ` x ) = { N } } = { x e. dom I | ( I ` x ) = { N } } ) |
| 84 | 81 83 | eqtr3id | |- ( ph -> { x | ( x e. dom I /\ ( ( iEdg ` U ) ` x ) = { N } ) } = { x e. dom I | ( I ` x ) = { N } } ) |
| 85 | df-rab | |- { x e. dom J | ( ( iEdg ` U ) ` x ) = { N } } = { x | ( x e. dom J /\ ( ( iEdg ` U ) ` x ) = { N } ) } |
|
| 86 | 47 | eqeq1d | |- ( ( ph /\ x e. dom J ) -> ( ( ( iEdg ` U ) ` x ) = { N } <-> ( J ` x ) = { N } ) ) |
| 87 | 86 | rabbidva | |- ( ph -> { x e. dom J | ( ( iEdg ` U ) ` x ) = { N } } = { x e. dom J | ( J ` x ) = { N } } ) |
| 88 | 85 87 | eqtr3id | |- ( ph -> { x | ( x e. dom J /\ ( ( iEdg ` U ) ` x ) = { N } ) } = { x e. dom J | ( J ` x ) = { N } } ) |
| 89 | 84 88 | uneq12d | |- ( ph -> ( { x | ( x e. dom I /\ ( ( iEdg ` U ) ` x ) = { N } ) } u. { x | ( x e. dom J /\ ( ( iEdg ` U ) ` x ) = { N } ) } ) = ( { x e. dom I | ( I ` x ) = { N } } u. { x e. dom J | ( J ` x ) = { N } } ) ) |
| 90 | 77 80 89 | 3eqtrd | |- ( ph -> { x e. dom ( iEdg ` U ) | ( ( iEdg ` U ) ` x ) = { N } } = ( { x e. dom I | ( I ` x ) = { N } } u. { x e. dom J | ( J ` x ) = { N } } ) ) |
| 91 | 90 | fveq2d | |- ( ph -> ( # ` { x e. dom ( iEdg ` U ) | ( ( iEdg ` U ) ` x ) = { N } } ) = ( # ` ( { x e. dom I | ( I ` x ) = { N } } u. { x e. dom J | ( J ` x ) = { N } } ) ) ) |
| 92 | 55 | rabex | |- { x e. dom I | ( I ` x ) = { N } } e. _V |
| 93 | 92 | a1i | |- ( ph -> { x e. dom I | ( I ` x ) = { N } } e. _V ) |
| 94 | 59 | rabex | |- { x e. dom J | ( J ` x ) = { N } } e. _V |
| 95 | 94 | a1i | |- ( ph -> { x e. dom J | ( J ` x ) = { N } } e. _V ) |
| 96 | ssrab2 | |- { x e. dom I | ( I ` x ) = { N } } C_ dom I |
|
| 97 | ssrab2 | |- { x e. dom J | ( J ` x ) = { N } } C_ dom J |
|
| 98 | ss2in | |- ( ( { x e. dom I | ( I ` x ) = { N } } C_ dom I /\ { x e. dom J | ( J ` x ) = { N } } C_ dom J ) -> ( { x e. dom I | ( I ` x ) = { N } } i^i { x e. dom J | ( J ` x ) = { N } } ) C_ ( dom I i^i dom J ) ) |
|
| 99 | 96 97 98 | mp2an | |- ( { x e. dom I | ( I ` x ) = { N } } i^i { x e. dom J | ( J ` x ) = { N } } ) C_ ( dom I i^i dom J ) |
| 100 | 99 6 | sseqtrid | |- ( ph -> ( { x e. dom I | ( I ` x ) = { N } } i^i { x e. dom J | ( J ` x ) = { N } } ) C_ (/) ) |
| 101 | ss0 | |- ( ( { x e. dom I | ( I ` x ) = { N } } i^i { x e. dom J | ( J ` x ) = { N } } ) C_ (/) -> ( { x e. dom I | ( I ` x ) = { N } } i^i { x e. dom J | ( J ` x ) = { N } } ) = (/) ) |
|
| 102 | 100 101 | syl | |- ( ph -> ( { x e. dom I | ( I ` x ) = { N } } i^i { x e. dom J | ( J ` x ) = { N } } ) = (/) ) |
| 103 | hashunx | |- ( ( { x e. dom I | ( I ` x ) = { N } } e. _V /\ { x e. dom J | ( J ` x ) = { N } } e. _V /\ ( { x e. dom I | ( I ` x ) = { N } } i^i { x e. dom J | ( J ` x ) = { N } } ) = (/) ) -> ( # ` ( { x e. dom I | ( I ` x ) = { N } } u. { x e. dom J | ( J ` x ) = { N } } ) ) = ( ( # ` { x e. dom I | ( I ` x ) = { N } } ) +e ( # ` { x e. dom J | ( J ` x ) = { N } } ) ) ) |
|
| 104 | 93 95 102 103 | syl3anc | |- ( ph -> ( # ` ( { x e. dom I | ( I ` x ) = { N } } u. { x e. dom J | ( J ` x ) = { N } } ) ) = ( ( # ` { x e. dom I | ( I ` x ) = { N } } ) +e ( # ` { x e. dom J | ( J ` x ) = { N } } ) ) ) |
| 105 | 91 104 | eqtrd | |- ( ph -> ( # ` { x e. dom ( iEdg ` U ) | ( ( iEdg ` U ) ` x ) = { N } } ) = ( ( # ` { x e. dom I | ( I ` x ) = { N } } ) +e ( # ` { x e. dom J | ( J ` x ) = { N } } ) ) ) |
| 106 | 71 105 | oveq12d | |- ( ph -> ( ( # ` { x e. dom ( iEdg ` U ) | N e. ( ( iEdg ` U ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` U ) | ( ( iEdg ` U ) ` x ) = { N } } ) ) = ( ( ( # ` { x e. dom I | N e. ( I ` x ) } ) +e ( # ` { x e. dom J | N e. ( J ` x ) } ) ) +e ( ( # ` { x e. dom I | ( I ` x ) = { N } } ) +e ( # ` { x e. dom J | ( J ` x ) = { N } } ) ) ) ) |
| 107 | hashxnn0 | |- ( { x e. dom I | N e. ( I ` x ) } e. _V -> ( # ` { x e. dom I | N e. ( I ` x ) } ) e. NN0* ) |
|
| 108 | 57 107 | syl | |- ( ph -> ( # ` { x e. dom I | N e. ( I ` x ) } ) e. NN0* ) |
| 109 | hashxnn0 | |- ( { x e. dom J | N e. ( J ` x ) } e. _V -> ( # ` { x e. dom J | N e. ( J ` x ) } ) e. NN0* ) |
|
| 110 | 61 109 | syl | |- ( ph -> ( # ` { x e. dom J | N e. ( J ` x ) } ) e. NN0* ) |
| 111 | hashxnn0 | |- ( { x e. dom I | ( I ` x ) = { N } } e. _V -> ( # ` { x e. dom I | ( I ` x ) = { N } } ) e. NN0* ) |
|
| 112 | 93 111 | syl | |- ( ph -> ( # ` { x e. dom I | ( I ` x ) = { N } } ) e. NN0* ) |
| 113 | hashxnn0 | |- ( { x e. dom J | ( J ` x ) = { N } } e. _V -> ( # ` { x e. dom J | ( J ` x ) = { N } } ) e. NN0* ) |
|
| 114 | 95 113 | syl | |- ( ph -> ( # ` { x e. dom J | ( J ` x ) = { N } } ) e. NN0* ) |
| 115 | 108 110 112 114 | xnn0add4d | |- ( ph -> ( ( ( # ` { x e. dom I | N e. ( I ` x ) } ) +e ( # ` { x e. dom J | N e. ( J ` x ) } ) ) +e ( ( # ` { x e. dom I | ( I ` x ) = { N } } ) +e ( # ` { x e. dom J | ( J ` x ) = { N } } ) ) ) = ( ( ( # ` { x e. dom I | N e. ( I ` x ) } ) +e ( # ` { x e. dom I | ( I ` x ) = { N } } ) ) +e ( ( # ` { x e. dom J | N e. ( J ` x ) } ) +e ( # ` { x e. dom J | ( J ` x ) = { N } } ) ) ) ) |
| 116 | 106 115 | eqtrd | |- ( ph -> ( ( # ` { x e. dom ( iEdg ` U ) | N e. ( ( iEdg ` U ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` U ) | ( ( iEdg ` U ) ` x ) = { N } } ) ) = ( ( ( # ` { x e. dom I | N e. ( I ` x ) } ) +e ( # ` { x e. dom I | ( I ` x ) = { N } } ) ) +e ( ( # ` { x e. dom J | N e. ( J ` x ) } ) +e ( # ` { x e. dom J | ( J ` x ) = { N } } ) ) ) ) |
| 117 | 9 5 | eleqtrrd | |- ( ph -> N e. ( Vtx ` U ) ) |
| 118 | eqid | |- ( Vtx ` U ) = ( Vtx ` U ) |
|
| 119 | eqid | |- ( iEdg ` U ) = ( iEdg ` U ) |
|
| 120 | eqid | |- dom ( iEdg ` U ) = dom ( iEdg ` U ) |
|
| 121 | 118 119 120 | vtxdgval | |- ( N e. ( Vtx ` U ) -> ( ( VtxDeg ` U ) ` N ) = ( ( # ` { x e. dom ( iEdg ` U ) | N e. ( ( iEdg ` U ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` U ) | ( ( iEdg ` U ) ` x ) = { N } } ) ) ) |
| 122 | 117 121 | syl | |- ( ph -> ( ( VtxDeg ` U ) ` N ) = ( ( # ` { x e. dom ( iEdg ` U ) | N e. ( ( iEdg ` U ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` U ) | ( ( iEdg ` U ) ` x ) = { N } } ) ) ) |
| 123 | eqid | |- dom I = dom I |
|
| 124 | 3 1 123 | vtxdgval | |- ( N e. V -> ( ( VtxDeg ` G ) ` N ) = ( ( # ` { x e. dom I | N e. ( I ` x ) } ) +e ( # ` { x e. dom I | ( I ` x ) = { N } } ) ) ) |
| 125 | 9 124 | syl | |- ( ph -> ( ( VtxDeg ` G ) ` N ) = ( ( # ` { x e. dom I | N e. ( I ` x ) } ) +e ( # ` { x e. dom I | ( I ` x ) = { N } } ) ) ) |
| 126 | 9 4 | eleqtrrd | |- ( ph -> N e. ( Vtx ` H ) ) |
| 127 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 128 | eqid | |- dom J = dom J |
|
| 129 | 127 2 128 | vtxdgval | |- ( N e. ( Vtx ` H ) -> ( ( VtxDeg ` H ) ` N ) = ( ( # ` { x e. dom J | N e. ( J ` x ) } ) +e ( # ` { x e. dom J | ( J ` x ) = { N } } ) ) ) |
| 130 | 126 129 | syl | |- ( ph -> ( ( VtxDeg ` H ) ` N ) = ( ( # ` { x e. dom J | N e. ( J ` x ) } ) +e ( # ` { x e. dom J | ( J ` x ) = { N } } ) ) ) |
| 131 | 125 130 | oveq12d | |- ( ph -> ( ( ( VtxDeg ` G ) ` N ) +e ( ( VtxDeg ` H ) ` N ) ) = ( ( ( # ` { x e. dom I | N e. ( I ` x ) } ) +e ( # ` { x e. dom I | ( I ` x ) = { N } } ) ) +e ( ( # ` { x e. dom J | N e. ( J ` x ) } ) +e ( # ` { x e. dom J | ( J ` x ) = { N } } ) ) ) ) |
| 132 | 116 122 131 | 3eqtr4d | |- ( ph -> ( ( VtxDeg ` U ) ` N ) = ( ( ( VtxDeg ` G ) ` N ) +e ( ( VtxDeg ` H ) ` N ) ) ) |