This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun . (Contributed by Alexander van der Vekens, 21-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashunx | |- ( ( A e. V /\ B e. W /\ ( A i^i B ) = (/) ) -> ( # ` ( A u. B ) ) = ( ( # ` A ) +e ( # ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashun | |- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( # ` ( A u. B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
|
| 2 | 1 | 3expa | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( A i^i B ) = (/) ) -> ( # ` ( A u. B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
| 3 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 4 | 3 | nn0red | |- ( A e. Fin -> ( # ` A ) e. RR ) |
| 5 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 6 | 5 | nn0red | |- ( B e. Fin -> ( # ` B ) e. RR ) |
| 7 | 4 6 | anim12i | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) e. RR /\ ( # ` B ) e. RR ) ) |
| 8 | 7 | adantr | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( A i^i B ) = (/) ) -> ( ( # ` A ) e. RR /\ ( # ` B ) e. RR ) ) |
| 9 | rexadd | |- ( ( ( # ` A ) e. RR /\ ( # ` B ) e. RR ) -> ( ( # ` A ) +e ( # ` B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
|
| 10 | 8 9 | syl | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( A i^i B ) = (/) ) -> ( ( # ` A ) +e ( # ` B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
| 11 | 10 | eqcomd | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( A i^i B ) = (/) ) -> ( ( # ` A ) + ( # ` B ) ) = ( ( # ` A ) +e ( # ` B ) ) ) |
| 12 | 2 11 | eqtrd | |- ( ( ( A e. Fin /\ B e. Fin ) /\ ( A i^i B ) = (/) ) -> ( # ` ( A u. B ) ) = ( ( # ` A ) +e ( # ` B ) ) ) |
| 13 | 12 | expcom | |- ( ( A i^i B ) = (/) -> ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A u. B ) ) = ( ( # ` A ) +e ( # ` B ) ) ) ) |
| 14 | 13 | 3ad2ant3 | |- ( ( A e. V /\ B e. W /\ ( A i^i B ) = (/) ) -> ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A u. B ) ) = ( ( # ` A ) +e ( # ` B ) ) ) ) |
| 15 | unexg | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V ) |
|
| 16 | unfir | |- ( ( A u. B ) e. Fin -> ( A e. Fin /\ B e. Fin ) ) |
|
| 17 | 16 | con3i | |- ( -. ( A e. Fin /\ B e. Fin ) -> -. ( A u. B ) e. Fin ) |
| 18 | hashinf | |- ( ( ( A u. B ) e. _V /\ -. ( A u. B ) e. Fin ) -> ( # ` ( A u. B ) ) = +oo ) |
|
| 19 | 15 17 18 | syl2anr | |- ( ( -. ( A e. Fin /\ B e. Fin ) /\ ( A e. V /\ B e. W ) ) -> ( # ` ( A u. B ) ) = +oo ) |
| 20 | ianor | |- ( -. ( A e. Fin /\ B e. Fin ) <-> ( -. A e. Fin \/ -. B e. Fin ) ) |
|
| 21 | simprl | |- ( ( -. A e. Fin /\ ( A e. V /\ B e. W ) ) -> A e. V ) |
|
| 22 | simprr | |- ( ( -. A e. Fin /\ ( A e. V /\ B e. W ) ) -> B e. W ) |
|
| 23 | hashnfinnn0 | |- ( ( A e. V /\ -. A e. Fin ) -> ( # ` A ) e/ NN0 ) |
|
| 24 | 23 | ex | |- ( A e. V -> ( -. A e. Fin -> ( # ` A ) e/ NN0 ) ) |
| 25 | 24 | adantr | |- ( ( A e. V /\ B e. W ) -> ( -. A e. Fin -> ( # ` A ) e/ NN0 ) ) |
| 26 | 25 | impcom | |- ( ( -. A e. Fin /\ ( A e. V /\ B e. W ) ) -> ( # ` A ) e/ NN0 ) |
| 27 | hashinfxadd | |- ( ( A e. V /\ B e. W /\ ( # ` A ) e/ NN0 ) -> ( ( # ` A ) +e ( # ` B ) ) = +oo ) |
|
| 28 | 21 22 26 27 | syl3anc | |- ( ( -. A e. Fin /\ ( A e. V /\ B e. W ) ) -> ( ( # ` A ) +e ( # ` B ) ) = +oo ) |
| 29 | 28 | eqcomd | |- ( ( -. A e. Fin /\ ( A e. V /\ B e. W ) ) -> +oo = ( ( # ` A ) +e ( # ` B ) ) ) |
| 30 | 29 | ex | |- ( -. A e. Fin -> ( ( A e. V /\ B e. W ) -> +oo = ( ( # ` A ) +e ( # ` B ) ) ) ) |
| 31 | hashxrcl | |- ( A e. V -> ( # ` A ) e. RR* ) |
|
| 32 | hashxrcl | |- ( B e. W -> ( # ` B ) e. RR* ) |
|
| 33 | 31 32 | anim12i | |- ( ( A e. V /\ B e. W ) -> ( ( # ` A ) e. RR* /\ ( # ` B ) e. RR* ) ) |
| 34 | 33 | adantl | |- ( ( -. B e. Fin /\ ( A e. V /\ B e. W ) ) -> ( ( # ` A ) e. RR* /\ ( # ` B ) e. RR* ) ) |
| 35 | xaddcom | |- ( ( ( # ` A ) e. RR* /\ ( # ` B ) e. RR* ) -> ( ( # ` A ) +e ( # ` B ) ) = ( ( # ` B ) +e ( # ` A ) ) ) |
|
| 36 | 34 35 | syl | |- ( ( -. B e. Fin /\ ( A e. V /\ B e. W ) ) -> ( ( # ` A ) +e ( # ` B ) ) = ( ( # ` B ) +e ( # ` A ) ) ) |
| 37 | simprr | |- ( ( -. B e. Fin /\ ( A e. V /\ B e. W ) ) -> B e. W ) |
|
| 38 | simprl | |- ( ( -. B e. Fin /\ ( A e. V /\ B e. W ) ) -> A e. V ) |
|
| 39 | hashnfinnn0 | |- ( ( B e. W /\ -. B e. Fin ) -> ( # ` B ) e/ NN0 ) |
|
| 40 | 39 | ex | |- ( B e. W -> ( -. B e. Fin -> ( # ` B ) e/ NN0 ) ) |
| 41 | 40 | adantl | |- ( ( A e. V /\ B e. W ) -> ( -. B e. Fin -> ( # ` B ) e/ NN0 ) ) |
| 42 | 41 | impcom | |- ( ( -. B e. Fin /\ ( A e. V /\ B e. W ) ) -> ( # ` B ) e/ NN0 ) |
| 43 | hashinfxadd | |- ( ( B e. W /\ A e. V /\ ( # ` B ) e/ NN0 ) -> ( ( # ` B ) +e ( # ` A ) ) = +oo ) |
|
| 44 | 37 38 42 43 | syl3anc | |- ( ( -. B e. Fin /\ ( A e. V /\ B e. W ) ) -> ( ( # ` B ) +e ( # ` A ) ) = +oo ) |
| 45 | 36 44 | eqtrd | |- ( ( -. B e. Fin /\ ( A e. V /\ B e. W ) ) -> ( ( # ` A ) +e ( # ` B ) ) = +oo ) |
| 46 | 45 | eqcomd | |- ( ( -. B e. Fin /\ ( A e. V /\ B e. W ) ) -> +oo = ( ( # ` A ) +e ( # ` B ) ) ) |
| 47 | 46 | ex | |- ( -. B e. Fin -> ( ( A e. V /\ B e. W ) -> +oo = ( ( # ` A ) +e ( # ` B ) ) ) ) |
| 48 | 30 47 | jaoi | |- ( ( -. A e. Fin \/ -. B e. Fin ) -> ( ( A e. V /\ B e. W ) -> +oo = ( ( # ` A ) +e ( # ` B ) ) ) ) |
| 49 | 20 48 | sylbi | |- ( -. ( A e. Fin /\ B e. Fin ) -> ( ( A e. V /\ B e. W ) -> +oo = ( ( # ` A ) +e ( # ` B ) ) ) ) |
| 50 | 49 | imp | |- ( ( -. ( A e. Fin /\ B e. Fin ) /\ ( A e. V /\ B e. W ) ) -> +oo = ( ( # ` A ) +e ( # ` B ) ) ) |
| 51 | 19 50 | eqtrd | |- ( ( -. ( A e. Fin /\ B e. Fin ) /\ ( A e. V /\ B e. W ) ) -> ( # ` ( A u. B ) ) = ( ( # ` A ) +e ( # ` B ) ) ) |
| 52 | 51 | expcom | |- ( ( A e. V /\ B e. W ) -> ( -. ( A e. Fin /\ B e. Fin ) -> ( # ` ( A u. B ) ) = ( ( # ` A ) +e ( # ` B ) ) ) ) |
| 53 | 52 | 3adant3 | |- ( ( A e. V /\ B e. W /\ ( A i^i B ) = (/) ) -> ( -. ( A e. Fin /\ B e. Fin ) -> ( # ` ( A u. B ) ) = ( ( # ` A ) +e ( # ` B ) ) ) ) |
| 54 | 14 53 | pm2.61d | |- ( ( A e. V /\ B e. W /\ ( A i^i B ) = (/) ) -> ( # ` ( A u. B ) ) = ( ( # ` A ) +e ( # ` B ) ) ) |