This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d . (Contributed by AV, 12-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xnn0add4d.1 | |- ( ph -> A e. NN0* ) |
|
| xnn0add4d.2 | |- ( ph -> B e. NN0* ) |
||
| xnn0add4d.3 | |- ( ph -> C e. NN0* ) |
||
| xnn0add4d.4 | |- ( ph -> D e. NN0* ) |
||
| Assertion | xnn0add4d | |- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( ( A +e C ) +e ( B +e D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnn0add4d.1 | |- ( ph -> A e. NN0* ) |
|
| 2 | xnn0add4d.2 | |- ( ph -> B e. NN0* ) |
|
| 3 | xnn0add4d.3 | |- ( ph -> C e. NN0* ) |
|
| 4 | xnn0add4d.4 | |- ( ph -> D e. NN0* ) |
|
| 5 | xnn0xrnemnf | |- ( A e. NN0* -> ( A e. RR* /\ A =/= -oo ) ) |
|
| 6 | 1 5 | syl | |- ( ph -> ( A e. RR* /\ A =/= -oo ) ) |
| 7 | xnn0xrnemnf | |- ( B e. NN0* -> ( B e. RR* /\ B =/= -oo ) ) |
|
| 8 | 2 7 | syl | |- ( ph -> ( B e. RR* /\ B =/= -oo ) ) |
| 9 | xnn0xrnemnf | |- ( C e. NN0* -> ( C e. RR* /\ C =/= -oo ) ) |
|
| 10 | 3 9 | syl | |- ( ph -> ( C e. RR* /\ C =/= -oo ) ) |
| 11 | xnn0xrnemnf | |- ( D e. NN0* -> ( D e. RR* /\ D =/= -oo ) ) |
|
| 12 | 4 11 | syl | |- ( ph -> ( D e. RR* /\ D =/= -oo ) ) |
| 13 | 6 8 10 12 | xadd4d | |- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( ( A +e C ) +e ( B +e D ) ) ) |