This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Union of two class abstractions. (Contributed by NM, 29-Sep-2002) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unab | |- ( { x | ph } u. { x | ps } ) = { x | ( ph \/ ps ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbor | |- ( [ y / x ] ( ph \/ ps ) <-> ( [ y / x ] ph \/ [ y / x ] ps ) ) |
|
| 2 | df-clab | |- ( y e. { x | ( ph \/ ps ) } <-> [ y / x ] ( ph \/ ps ) ) |
|
| 3 | df-clab | |- ( y e. { x | ph } <-> [ y / x ] ph ) |
|
| 4 | df-clab | |- ( y e. { x | ps } <-> [ y / x ] ps ) |
|
| 5 | 3 4 | orbi12i | |- ( ( y e. { x | ph } \/ y e. { x | ps } ) <-> ( [ y / x ] ph \/ [ y / x ] ps ) ) |
| 6 | 1 2 5 | 3bitr4ri | |- ( ( y e. { x | ph } \/ y e. { x | ps } ) <-> y e. { x | ( ph \/ ps ) } ) |
| 7 | 6 | uneqri | |- ( { x | ph } u. { x | ps } ) = { x | ( ph \/ ps ) } |