This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex in the union of two graphs on the same vertex set is the sum of the degrees of the vertex in each graph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 21-Dec-2017) (Revised by AV, 19-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdun.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| vtxdun.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| vtxdun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| vtxdun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | ||
| vtxdun.vu | ⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) | ||
| vtxdun.d | ⊢ ( 𝜑 → ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ) | ||
| vtxdun.fi | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| vtxdun.fj | ⊢ ( 𝜑 → Fun 𝐽 ) | ||
| vtxdun.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | ||
| vtxdun.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐼 ∪ 𝐽 ) ) | ||
| Assertion | vtxdun | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) +𝑒 ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdun.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | vtxdun.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 3 | vtxdun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 4 | vtxdun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | |
| 5 | vtxdun.vu | ⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) | |
| 6 | vtxdun.d | ⊢ ( 𝜑 → ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ) | |
| 7 | vtxdun.fi | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 8 | vtxdun.fj | ⊢ ( 𝜑 → Fun 𝐽 ) | |
| 9 | vtxdun.n | ⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) | |
| 10 | vtxdun.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐼 ∪ 𝐽 ) ) | |
| 11 | df-rab | ⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } | |
| 12 | 10 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = dom ( 𝐼 ∪ 𝐽 ) ) |
| 13 | dmun | ⊢ dom ( 𝐼 ∪ 𝐽 ) = ( dom 𝐼 ∪ dom 𝐽 ) | |
| 14 | 12 13 | eqtrdi | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = ( dom 𝐼 ∪ dom 𝐽 ) ) |
| 15 | 14 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ↔ 𝑥 ∈ ( dom 𝐼 ∪ dom 𝐽 ) ) ) |
| 16 | elun | ⊢ ( 𝑥 ∈ ( dom 𝐼 ∪ dom 𝐽 ) ↔ ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ) | |
| 17 | 15 16 | bitrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ↔ ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ) ) |
| 18 | 17 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) |
| 19 | andir | ⊢ ( ( ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) | |
| 20 | 18 19 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) ) ) |
| 21 | 20 | abbidv | ⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } ) |
| 22 | 11 21 | eqtrid | ⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } ) |
| 23 | unab | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ) = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } | |
| 24 | 23 | eqcomi | ⊢ { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } = ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ) |
| 25 | 24 | a1i | ⊢ ( 𝜑 → { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) ) } = ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ) ) |
| 26 | df-rab | ⊢ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } | |
| 27 | 10 | fveq1d | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) ) |
| 29 | 7 | funfnd | ⊢ ( 𝜑 → 𝐼 Fn dom 𝐼 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → 𝐼 Fn dom 𝐼 ) |
| 31 | 8 | funfnd | ⊢ ( 𝜑 → 𝐽 Fn dom 𝐽 ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → 𝐽 Fn dom 𝐽 ) |
| 33 | 6 | anim1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ∧ 𝑥 ∈ dom 𝐼 ) ) |
| 34 | fvun1 | ⊢ ( ( 𝐼 Fn dom 𝐼 ∧ 𝐽 Fn dom 𝐽 ∧ ( ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ∧ 𝑥 ∈ dom 𝐼 ) ) → ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) | |
| 35 | 30 32 33 34 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
| 36 | 28 35 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( 𝐼 ‘ 𝑥 ) ) |
| 37 | 36 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ↔ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ) ) |
| 38 | 37 | rabbidva | ⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) |
| 39 | 26 38 | eqtr3id | ⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } = { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) |
| 40 | df-rab | ⊢ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } | |
| 41 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) ) |
| 42 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → 𝐼 Fn dom 𝐼 ) |
| 43 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → 𝐽 Fn dom 𝐽 ) |
| 44 | 6 | anim1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ∧ 𝑥 ∈ dom 𝐽 ) ) |
| 45 | fvun2 | ⊢ ( ( 𝐼 Fn dom 𝐼 ∧ 𝐽 Fn dom 𝐽 ∧ ( ( dom 𝐼 ∩ dom 𝐽 ) = ∅ ∧ 𝑥 ∈ dom 𝐽 ) ) → ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) = ( 𝐽 ‘ 𝑥 ) ) | |
| 46 | 42 43 44 45 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( 𝐼 ∪ 𝐽 ) ‘ 𝑥 ) = ( 𝐽 ‘ 𝑥 ) ) |
| 47 | 41 46 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = ( 𝐽 ‘ 𝑥 ) ) |
| 48 | 47 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ↔ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) ) ) |
| 49 | 48 | rabbidva | ⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) |
| 50 | 40 49 | eqtr3id | ⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } = { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) |
| 51 | 39 50 | uneq12d | ⊢ ( 𝜑 → ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) ) } ) = ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) |
| 52 | 22 25 51 | 3eqtrd | ⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } = ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) |
| 53 | 52 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) = ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) ) |
| 54 | 1 | fvexi | ⊢ 𝐼 ∈ V |
| 55 | 54 | dmex | ⊢ dom 𝐼 ∈ V |
| 56 | 55 | rabex | ⊢ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V |
| 57 | 56 | a1i | ⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V ) |
| 58 | 2 | fvexi | ⊢ 𝐽 ∈ V |
| 59 | 58 | dmex | ⊢ dom 𝐽 ∈ V |
| 60 | 59 | rabex | ⊢ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ∈ V |
| 61 | 60 | a1i | ⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ∈ V ) |
| 62 | ssrab2 | ⊢ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ⊆ dom 𝐼 | |
| 63 | ssrab2 | ⊢ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ⊆ dom 𝐽 | |
| 64 | ss2in | ⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ⊆ dom 𝐼 ∧ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ⊆ dom 𝐽 ) → ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ⊆ ( dom 𝐼 ∩ dom 𝐽 ) ) | |
| 65 | 62 63 64 | mp2an | ⊢ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ⊆ ( dom 𝐼 ∩ dom 𝐽 ) |
| 66 | 65 6 | sseqtrid | ⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ⊆ ∅ ) |
| 67 | ss0 | ⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ⊆ ∅ → ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) = ∅ ) | |
| 68 | 66 67 | syl | ⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) = ∅ ) |
| 69 | hashunx | ⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V ∧ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ∈ V ∧ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∩ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) ) | |
| 70 | 57 61 68 69 | syl3anc | ⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∪ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) ) |
| 71 | 53 70 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) ) |
| 72 | df-rab | ⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∣ ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } | |
| 73 | 17 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) ) |
| 74 | andir | ⊢ ( ( ( 𝑥 ∈ dom 𝐼 ∨ 𝑥 ∈ dom 𝐽 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) ) | |
| 75 | 73 74 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ↔ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) ) ) |
| 76 | 75 | abbidv | ⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } ) |
| 77 | 72 76 | eqtrid | ⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } ) |
| 78 | unab | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ) = { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } | |
| 79 | 78 | eqcomi | ⊢ { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } = ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ) |
| 80 | 79 | a1i | ⊢ ( 𝜑 → { 𝑥 ∣ ( ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ∨ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) ) } = ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ) ) |
| 81 | df-rab | ⊢ { 𝑥 ∈ dom 𝐼 ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } | |
| 82 | 36 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐼 ) → ( ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ↔ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } ) ) |
| 83 | 82 | rabbidva | ⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐼 ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) |
| 84 | 81 83 | eqtr3id | ⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) |
| 85 | df-rab | ⊢ { 𝑥 ∈ dom 𝐽 ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } | |
| 86 | 47 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐽 ) → ( ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ↔ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } ) ) |
| 87 | 86 | rabbidva | ⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐽 ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) |
| 88 | 85 87 | eqtr3id | ⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) |
| 89 | 84 88 | uneq12d | ⊢ ( 𝜑 → ( { 𝑥 ∣ ( 𝑥 ∈ dom 𝐼 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ dom 𝐽 ∧ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } ) } ) = ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) |
| 90 | 77 80 89 | 3eqtrd | ⊢ ( 𝜑 → { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } = ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) |
| 91 | 90 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) = ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 92 | 55 | rabex | ⊢ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∈ V |
| 93 | 92 | a1i | ⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∈ V ) |
| 94 | 59 | rabex | ⊢ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ∈ V |
| 95 | 94 | a1i | ⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ∈ V ) |
| 96 | ssrab2 | ⊢ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ⊆ dom 𝐼 | |
| 97 | ssrab2 | ⊢ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ⊆ dom 𝐽 | |
| 98 | ss2in | ⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ⊆ dom 𝐼 ∧ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ⊆ dom 𝐽 ) → ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ⊆ ( dom 𝐼 ∩ dom 𝐽 ) ) | |
| 99 | 96 97 98 | mp2an | ⊢ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ⊆ ( dom 𝐼 ∩ dom 𝐽 ) |
| 100 | 99 6 | sseqtrid | ⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ⊆ ∅ ) |
| 101 | ss0 | ⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ⊆ ∅ → ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) = ∅ ) | |
| 102 | 100 101 | syl | ⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) = ∅ ) |
| 103 | hashunx | ⊢ ( ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∈ V ∧ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ∈ V ∧ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∩ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) = ∅ ) → ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) | |
| 104 | 93 95 102 103 | syl3anc | ⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∪ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 105 | 91 104 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 106 | 71 105 | oveq12d | ⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) ) = ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) ) |
| 107 | hashxnn0 | ⊢ ( { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) ∈ ℕ0* ) | |
| 108 | 57 107 | syl | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) ∈ ℕ0* ) |
| 109 | hashxnn0 | ⊢ ( { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ∈ ℕ0* ) | |
| 110 | 61 109 | syl | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ∈ ℕ0* ) |
| 111 | hashxnn0 | ⊢ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ∈ ℕ0* ) | |
| 112 | 93 111 | syl | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ∈ ℕ0* ) |
| 113 | hashxnn0 | ⊢ ( { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ∈ ℕ0* ) | |
| 114 | 95 113 | syl | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ∈ ℕ0* ) |
| 115 | 108 110 112 114 | xnn0add4d | ⊢ ( 𝜑 → ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) = ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) ) |
| 116 | 106 115 | eqtrd | ⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) ) = ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) ) |
| 117 | 9 5 | eleqtrrd | ⊢ ( 𝜑 → 𝑁 ∈ ( Vtx ‘ 𝑈 ) ) |
| 118 | eqid | ⊢ ( Vtx ‘ 𝑈 ) = ( Vtx ‘ 𝑈 ) | |
| 119 | eqid | ⊢ ( iEdg ‘ 𝑈 ) = ( iEdg ‘ 𝑈 ) | |
| 120 | eqid | ⊢ dom ( iEdg ‘ 𝑈 ) = dom ( iEdg ‘ 𝑈 ) | |
| 121 | 118 119 120 | vtxdgval | ⊢ ( 𝑁 ∈ ( Vtx ‘ 𝑈 ) → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 122 | 117 121 | syl | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ 𝑁 ∈ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝑈 ) ∣ ( ( iEdg ‘ 𝑈 ) ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 123 | eqid | ⊢ dom 𝐼 = dom 𝐼 | |
| 124 | 3 1 123 | vtxdgval | ⊢ ( 𝑁 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 125 | 9 124 | syl | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 126 | 9 4 | eleqtrrd | ⊢ ( 𝜑 → 𝑁 ∈ ( Vtx ‘ 𝐻 ) ) |
| 127 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 128 | eqid | ⊢ dom 𝐽 = dom 𝐽 | |
| 129 | 127 2 128 | vtxdgval | ⊢ ( 𝑁 ∈ ( Vtx ‘ 𝐻 ) → ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 130 | 126 129 | syl | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) |
| 131 | 125 130 | oveq12d | ⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) +𝑒 ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) ) = ( ( ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑁 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ 𝑁 ∈ ( 𝐽 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) = { 𝑁 } } ) ) ) ) |
| 132 | 116 122 131 | 3eqtr4d | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝑈 ) ‘ 𝑁 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) +𝑒 ( ( VtxDeg ‘ 𝐻 ) ‘ 𝑁 ) ) ) |