This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opth1.1 | |- A e. _V |
|
| opth1.2 | |- B e. _V |
||
| Assertion | opth1 | |- ( <. A , B >. = <. C , D >. -> A = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 | |- A e. _V |
|
| 2 | opth1.2 | |- B e. _V |
|
| 3 | 1 2 | opi1 | |- { A } e. <. A , B >. |
| 4 | id | |- ( <. A , B >. = <. C , D >. -> <. A , B >. = <. C , D >. ) |
|
| 5 | 3 4 | eleqtrid | |- ( <. A , B >. = <. C , D >. -> { A } e. <. C , D >. ) |
| 6 | 1 | sneqr | |- ( { A } = { C } -> A = C ) |
| 7 | 6 | a1i | |- ( { A } e. <. C , D >. -> ( { A } = { C } -> A = C ) ) |
| 8 | oprcl | |- ( { A } e. <. C , D >. -> ( C e. _V /\ D e. _V ) ) |
|
| 9 | 8 | simpld | |- ( { A } e. <. C , D >. -> C e. _V ) |
| 10 | prid1g | |- ( C e. _V -> C e. { C , D } ) |
|
| 11 | 9 10 | syl | |- ( { A } e. <. C , D >. -> C e. { C , D } ) |
| 12 | eleq2 | |- ( { A } = { C , D } -> ( C e. { A } <-> C e. { C , D } ) ) |
|
| 13 | 11 12 | syl5ibrcom | |- ( { A } e. <. C , D >. -> ( { A } = { C , D } -> C e. { A } ) ) |
| 14 | elsni | |- ( C e. { A } -> C = A ) |
|
| 15 | 14 | eqcomd | |- ( C e. { A } -> A = C ) |
| 16 | 13 15 | syl6 | |- ( { A } e. <. C , D >. -> ( { A } = { C , D } -> A = C ) ) |
| 17 | id | |- ( { A } e. <. C , D >. -> { A } e. <. C , D >. ) |
|
| 18 | dfopg | |- ( ( C e. _V /\ D e. _V ) -> <. C , D >. = { { C } , { C , D } } ) |
|
| 19 | 8 18 | syl | |- ( { A } e. <. C , D >. -> <. C , D >. = { { C } , { C , D } } ) |
| 20 | 17 19 | eleqtrd | |- ( { A } e. <. C , D >. -> { A } e. { { C } , { C , D } } ) |
| 21 | elpri | |- ( { A } e. { { C } , { C , D } } -> ( { A } = { C } \/ { A } = { C , D } ) ) |
|
| 22 | 20 21 | syl | |- ( { A } e. <. C , D >. -> ( { A } = { C } \/ { A } = { C , D } ) ) |
| 23 | 7 16 22 | mpjaod | |- ( { A } e. <. C , D >. -> A = C ) |
| 24 | 5 23 | syl | |- ( <. A , B >. = <. C , D >. -> A = C ) |