This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | |- C e. ZZ |
|
| om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
||
| uzrdg.1 | |- A e. _V |
||
| uzrdg.2 | |- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
||
| uzrdg.3 | |- S = ran R |
||
| Assertion | uzrdg0i | |- ( S ` C ) = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | |- C e. ZZ |
|
| 2 | om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
|
| 3 | uzrdg.1 | |- A e. _V |
|
| 4 | uzrdg.2 | |- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
|
| 5 | uzrdg.3 | |- S = ran R |
|
| 6 | 1 2 3 4 5 | uzrdgfni | |- S Fn ( ZZ>= ` C ) |
| 7 | fnfun | |- ( S Fn ( ZZ>= ` C ) -> Fun S ) |
|
| 8 | 6 7 | ax-mp | |- Fun S |
| 9 | 4 | fveq1i | |- ( R ` (/) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) |
| 10 | opex | |- <. C , A >. e. _V |
|
| 11 | fr0g | |- ( <. C , A >. e. _V -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. ) |
|
| 12 | 10 11 | ax-mp | |- ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. |
| 13 | 9 12 | eqtri | |- ( R ` (/) ) = <. C , A >. |
| 14 | frfnom | |- ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om |
|
| 15 | 4 | fneq1i | |- ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om ) |
| 16 | 14 15 | mpbir | |- R Fn _om |
| 17 | peano1 | |- (/) e. _om |
|
| 18 | fnfvelrn | |- ( ( R Fn _om /\ (/) e. _om ) -> ( R ` (/) ) e. ran R ) |
|
| 19 | 16 17 18 | mp2an | |- ( R ` (/) ) e. ran R |
| 20 | 13 19 | eqeltrri | |- <. C , A >. e. ran R |
| 21 | 20 5 | eleqtrri | |- <. C , A >. e. S |
| 22 | funopfv | |- ( Fun S -> ( <. C , A >. e. S -> ( S ` C ) = A ) ) |
|
| 23 | 8 21 22 | mp2 | |- ( S ` C ) = A |