This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value G (see om2uz0i ) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | |- C e. ZZ |
|
| om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
||
| Assertion | om2uzuzi | |- ( A e. _om -> ( G ` A ) e. ( ZZ>= ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | |- C e. ZZ |
|
| 2 | om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
|
| 3 | fveq2 | |- ( y = (/) -> ( G ` y ) = ( G ` (/) ) ) |
|
| 4 | 3 | eleq1d | |- ( y = (/) -> ( ( G ` y ) e. ( ZZ>= ` C ) <-> ( G ` (/) ) e. ( ZZ>= ` C ) ) ) |
| 5 | fveq2 | |- ( y = z -> ( G ` y ) = ( G ` z ) ) |
|
| 6 | 5 | eleq1d | |- ( y = z -> ( ( G ` y ) e. ( ZZ>= ` C ) <-> ( G ` z ) e. ( ZZ>= ` C ) ) ) |
| 7 | fveq2 | |- ( y = suc z -> ( G ` y ) = ( G ` suc z ) ) |
|
| 8 | 7 | eleq1d | |- ( y = suc z -> ( ( G ` y ) e. ( ZZ>= ` C ) <-> ( G ` suc z ) e. ( ZZ>= ` C ) ) ) |
| 9 | fveq2 | |- ( y = A -> ( G ` y ) = ( G ` A ) ) |
|
| 10 | 9 | eleq1d | |- ( y = A -> ( ( G ` y ) e. ( ZZ>= ` C ) <-> ( G ` A ) e. ( ZZ>= ` C ) ) ) |
| 11 | 1 2 | om2uz0i | |- ( G ` (/) ) = C |
| 12 | uzid | |- ( C e. ZZ -> C e. ( ZZ>= ` C ) ) |
|
| 13 | 1 12 | ax-mp | |- C e. ( ZZ>= ` C ) |
| 14 | 11 13 | eqeltri | |- ( G ` (/) ) e. ( ZZ>= ` C ) |
| 15 | peano2uz | |- ( ( G ` z ) e. ( ZZ>= ` C ) -> ( ( G ` z ) + 1 ) e. ( ZZ>= ` C ) ) |
|
| 16 | 1 2 | om2uzsuci | |- ( z e. _om -> ( G ` suc z ) = ( ( G ` z ) + 1 ) ) |
| 17 | 16 | eleq1d | |- ( z e. _om -> ( ( G ` suc z ) e. ( ZZ>= ` C ) <-> ( ( G ` z ) + 1 ) e. ( ZZ>= ` C ) ) ) |
| 18 | 15 17 | imbitrrid | |- ( z e. _om -> ( ( G ` z ) e. ( ZZ>= ` C ) -> ( G ` suc z ) e. ( ZZ>= ` C ) ) ) |
| 19 | 4 6 8 10 14 18 | finds | |- ( A e. _om -> ( G ` A ) e. ( ZZ>= ` C ) ) |