This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996) (Revised by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frfnom | |- ( rec ( F , A ) |` _om ) Fn _om |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun | |- Fun rec ( F , A ) |
|
| 2 | funres | |- ( Fun rec ( F , A ) -> Fun ( rec ( F , A ) |` _om ) ) |
|
| 3 | 1 2 | ax-mp | |- Fun ( rec ( F , A ) |` _om ) |
| 4 | dmres | |- dom ( rec ( F , A ) |` _om ) = ( _om i^i dom rec ( F , A ) ) |
|
| 5 | rdgdmlim | |- Lim dom rec ( F , A ) |
|
| 6 | limomss | |- ( Lim dom rec ( F , A ) -> _om C_ dom rec ( F , A ) ) |
|
| 7 | 5 6 | ax-mp | |- _om C_ dom rec ( F , A ) |
| 8 | dfss2 | |- ( _om C_ dom rec ( F , A ) <-> ( _om i^i dom rec ( F , A ) ) = _om ) |
|
| 9 | 7 8 | mpbi | |- ( _om i^i dom rec ( F , A ) ) = _om |
| 10 | 4 9 | eqtri | |- dom ( rec ( F , A ) |` _om ) = _om |
| 11 | df-fn | |- ( ( rec ( F , A ) |` _om ) Fn _om <-> ( Fun ( rec ( F , A ) |` _om ) /\ dom ( rec ( F , A ) |` _om ) = _om ) ) |
|
| 12 | 3 10 11 | mpbir2an | |- ( rec ( F , A ) |` _om ) Fn _om |