This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| Assertion | ustuqtop0 | |- ( U e. ( UnifOn ` X ) -> N : X --> ~P ~P X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| 2 | ustimasn | |- ( ( U e. ( UnifOn ` X ) /\ v e. U /\ p e. X ) -> ( v " { p } ) C_ X ) |
|
| 3 | 2 | 3expa | |- ( ( ( U e. ( UnifOn ` X ) /\ v e. U ) /\ p e. X ) -> ( v " { p } ) C_ X ) |
| 4 | 3 | an32s | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ v e. U ) -> ( v " { p } ) C_ X ) |
| 5 | vex | |- v e. _V |
|
| 6 | 5 | imaex | |- ( v " { p } ) e. _V |
| 7 | 6 | elpw | |- ( ( v " { p } ) e. ~P X <-> ( v " { p } ) C_ X ) |
| 8 | 4 7 | sylibr | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ v e. U ) -> ( v " { p } ) e. ~P X ) |
| 9 | 8 | ralrimiva | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> A. v e. U ( v " { p } ) e. ~P X ) |
| 10 | eqid | |- ( v e. U |-> ( v " { p } ) ) = ( v e. U |-> ( v " { p } ) ) |
|
| 11 | 10 | rnmptss | |- ( A. v e. U ( v " { p } ) e. ~P X -> ran ( v e. U |-> ( v " { p } ) ) C_ ~P X ) |
| 12 | 9 11 | syl | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ran ( v e. U |-> ( v " { p } ) ) C_ ~P X ) |
| 13 | mptexg | |- ( U e. ( UnifOn ` X ) -> ( v e. U |-> ( v " { p } ) ) e. _V ) |
|
| 14 | rnexg | |- ( ( v e. U |-> ( v " { p } ) ) e. _V -> ran ( v e. U |-> ( v " { p } ) ) e. _V ) |
|
| 15 | elpwg | |- ( ran ( v e. U |-> ( v " { p } ) ) e. _V -> ( ran ( v e. U |-> ( v " { p } ) ) e. ~P ~P X <-> ran ( v e. U |-> ( v " { p } ) ) C_ ~P X ) ) |
|
| 16 | 13 14 15 | 3syl | |- ( U e. ( UnifOn ` X ) -> ( ran ( v e. U |-> ( v " { p } ) ) e. ~P ~P X <-> ran ( v e. U |-> ( v " { p } ) ) C_ ~P X ) ) |
| 17 | 16 | adantr | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( ran ( v e. U |-> ( v " { p } ) ) e. ~P ~P X <-> ran ( v e. U |-> ( v " { p } ) ) C_ ~P X ) ) |
| 18 | 12 17 | mpbird | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ran ( v e. U |-> ( v " { p } ) ) e. ~P ~P X ) |
| 19 | 18 1 | fmptd | |- ( U e. ( UnifOn ` X ) -> N : X --> ~P ~P X ) |