This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| Assertion | ustuqtop2 | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( fi ` ( N ` p ) ) C_ ( N ` p ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| 2 | simp-6l | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ b e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) /\ u e. U ) /\ b = ( u " { p } ) ) -> ( U e. ( UnifOn ` X ) /\ p e. X ) ) |
|
| 3 | simp-7l | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ b e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) /\ u e. U ) /\ b = ( u " { p } ) ) -> U e. ( UnifOn ` X ) ) |
|
| 4 | simp-4r | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ b e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) /\ u e. U ) /\ b = ( u " { p } ) ) -> w e. U ) |
|
| 5 | simplr | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ b e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) /\ u e. U ) /\ b = ( u " { p } ) ) -> u e. U ) |
|
| 6 | ustincl | |- ( ( U e. ( UnifOn ` X ) /\ w e. U /\ u e. U ) -> ( w i^i u ) e. U ) |
|
| 7 | 3 4 5 6 | syl3anc | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ b e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) /\ u e. U ) /\ b = ( u " { p } ) ) -> ( w i^i u ) e. U ) |
| 8 | ineq12 | |- ( ( a = ( w " { p } ) /\ b = ( u " { p } ) ) -> ( a i^i b ) = ( ( w " { p } ) i^i ( u " { p } ) ) ) |
|
| 9 | inimasn | |- ( p e. _V -> ( ( w i^i u ) " { p } ) = ( ( w " { p } ) i^i ( u " { p } ) ) ) |
|
| 10 | 9 | elv | |- ( ( w i^i u ) " { p } ) = ( ( w " { p } ) i^i ( u " { p } ) ) |
| 11 | 8 10 | eqtr4di | |- ( ( a = ( w " { p } ) /\ b = ( u " { p } ) ) -> ( a i^i b ) = ( ( w i^i u ) " { p } ) ) |
| 12 | 11 | ad4ant24 | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ b e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) /\ u e. U ) /\ b = ( u " { p } ) ) -> ( a i^i b ) = ( ( w i^i u ) " { p } ) ) |
| 13 | imaeq1 | |- ( x = ( w i^i u ) -> ( x " { p } ) = ( ( w i^i u ) " { p } ) ) |
|
| 14 | 13 | rspceeqv | |- ( ( ( w i^i u ) e. U /\ ( a i^i b ) = ( ( w i^i u ) " { p } ) ) -> E. x e. U ( a i^i b ) = ( x " { p } ) ) |
| 15 | 7 12 14 | syl2anc | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ b e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) /\ u e. U ) /\ b = ( u " { p } ) ) -> E. x e. U ( a i^i b ) = ( x " { p } ) ) |
| 16 | vex | |- a e. _V |
|
| 17 | 16 | inex1 | |- ( a i^i b ) e. _V |
| 18 | 1 | ustuqtoplem | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ ( a i^i b ) e. _V ) -> ( ( a i^i b ) e. ( N ` p ) <-> E. x e. U ( a i^i b ) = ( x " { p } ) ) ) |
| 19 | 17 18 | mpan2 | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( ( a i^i b ) e. ( N ` p ) <-> E. x e. U ( a i^i b ) = ( x " { p } ) ) ) |
| 20 | 19 | biimpar | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ E. x e. U ( a i^i b ) = ( x " { p } ) ) -> ( a i^i b ) e. ( N ` p ) ) |
| 21 | 2 15 20 | syl2anc | |- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ b e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) /\ u e. U ) /\ b = ( u " { p } ) ) -> ( a i^i b ) e. ( N ` p ) ) |
| 22 | 1 | ustuqtoplem | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ b e. _V ) -> ( b e. ( N ` p ) <-> E. u e. U b = ( u " { p } ) ) ) |
| 23 | 22 | elvd | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( b e. ( N ` p ) <-> E. u e. U b = ( u " { p } ) ) ) |
| 24 | 23 | biimpa | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ b e. ( N ` p ) ) -> E. u e. U b = ( u " { p } ) ) |
| 25 | 24 | ad5ant13 | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ b e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> E. u e. U b = ( u " { p } ) ) |
| 26 | 21 25 | r19.29a | |- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ b e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> ( a i^i b ) e. ( N ` p ) ) |
| 27 | 1 | ustuqtoplem | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. _V ) -> ( a e. ( N ` p ) <-> E. w e. U a = ( w " { p } ) ) ) |
| 28 | 27 | elvd | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( a e. ( N ` p ) <-> E. w e. U a = ( w " { p } ) ) ) |
| 29 | 28 | biimpa | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> E. w e. U a = ( w " { p } ) ) |
| 30 | 29 | adantr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ b e. ( N ` p ) ) -> E. w e. U a = ( w " { p } ) ) |
| 31 | 26 30 | r19.29a | |- ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ b e. ( N ` p ) ) -> ( a i^i b ) e. ( N ` p ) ) |
| 32 | 31 | ralrimiva | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> A. b e. ( N ` p ) ( a i^i b ) e. ( N ` p ) ) |
| 33 | 32 | ralrimiva | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> A. a e. ( N ` p ) A. b e. ( N ` p ) ( a i^i b ) e. ( N ` p ) ) |
| 34 | fvex | |- ( N ` p ) e. _V |
|
| 35 | inficl | |- ( ( N ` p ) e. _V -> ( A. a e. ( N ` p ) A. b e. ( N ` p ) ( a i^i b ) e. ( N ` p ) <-> ( fi ` ( N ` p ) ) = ( N ` p ) ) ) |
|
| 36 | 34 35 | ax-mp | |- ( A. a e. ( N ` p ) A. b e. ( N ` p ) ( a i^i b ) e. ( N ` p ) <-> ( fi ` ( N ` p ) ) = ( N ` p ) ) |
| 37 | 33 36 | sylib | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( fi ` ( N ` p ) ) = ( N ` p ) ) |
| 38 | eqimss | |- ( ( fi ` ( N ` p ) ) = ( N ` p ) -> ( fi ` ( N ` p ) ) C_ ( N ` p ) ) |
|
| 39 | 37 38 | syl | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( fi ` ( N ` p ) ) C_ ( N ` p ) ) |