This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| Assertion | ustuqtop5 | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> X e. ( N ` p ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| 2 | ustbasel | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) e. U ) |
|
| 3 | snssi | |- ( p e. X -> { p } C_ X ) |
|
| 4 | dfss | |- ( { p } C_ X <-> { p } = ( { p } i^i X ) ) |
|
| 5 | 3 4 | sylib | |- ( p e. X -> { p } = ( { p } i^i X ) ) |
| 6 | incom | |- ( { p } i^i X ) = ( X i^i { p } ) |
|
| 7 | 5 6 | eqtr2di | |- ( p e. X -> ( X i^i { p } ) = { p } ) |
| 8 | snnzg | |- ( p e. X -> { p } =/= (/) ) |
|
| 9 | 7 8 | eqnetrd | |- ( p e. X -> ( X i^i { p } ) =/= (/) ) |
| 10 | 9 | adantl | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( X i^i { p } ) =/= (/) ) |
| 11 | xpima2 | |- ( ( X i^i { p } ) =/= (/) -> ( ( X X. X ) " { p } ) = X ) |
|
| 12 | 10 11 | syl | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( ( X X. X ) " { p } ) = X ) |
| 13 | 12 | eqcomd | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> X = ( ( X X. X ) " { p } ) ) |
| 14 | imaeq1 | |- ( w = ( X X. X ) -> ( w " { p } ) = ( ( X X. X ) " { p } ) ) |
|
| 15 | 14 | rspceeqv | |- ( ( ( X X. X ) e. U /\ X = ( ( X X. X ) " { p } ) ) -> E. w e. U X = ( w " { p } ) ) |
| 16 | 2 13 15 | syl2an2r | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> E. w e. U X = ( w " { p } ) ) |
| 17 | elfvex | |- ( U e. ( UnifOn ` X ) -> X e. _V ) |
|
| 18 | 1 | ustuqtoplem | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ X e. _V ) -> ( X e. ( N ` p ) <-> E. w e. U X = ( w " { p } ) ) ) |
| 19 | 17 18 | mpidan | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( X e. ( N ` p ) <-> E. w e. U X = ( w " { p } ) ) ) |
| 20 | 16 19 | mpbird | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> X e. ( N ` p ) ) |